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ABSTRACT

This report considers the problem of controlling both the
sttitudc and angular velocities of an axially symmetric spacecraft
while minimizing the maneuver duration. In particular, varicus com-
binations of thrust limited reaction jets are.employed to properly
orient a spinping space body with respect to specified reference di-
rections starting from known initial conditions of the vehicle's
sttitude and angular rates. Five control jet configurations are
considered: two gimballed systems where torques can be applied about,
1) eny axis in a plane normal to the axis of symmetry, 2) two per-

pendicular non-rotating axis in a plane normal to the axis of symme-

try; and three body-fixed configurations where the thristers are

"{mmobile relative to the vehicle and can provide both positive end

negative or only positive (negative) control torques about one or both
of the vehicle's transverse axis. The control systems are realizable
from & hardware standpoint and the corresponding optimal controls can
be classified as; 1) a continuous function of time, 2) bang-bang,
3) on-off, and L) & combination of (1 and 2) or (2 and 3). In add-
ition to specifying five controller configurations the following
assumptions are made: 1) the only external torquég are the control
torques, 2) the vehicle has a single axis of symmetry and is spinning
et a constant rate about this axis, 3) motion of the vehicle's axis of

symmetry is limited to small angular excursions about a nominal
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direction, and 4) the maneuvers terminate with zero angular rates
about the transverse axis,

The optimal control problem is furmulated in terms of four stace
variables: two normalized angular velocities and two normalized,
inertial cowponents of angular momentum {or two dimensionless spin axis
position angles), The maximum principle is used tc provide a necessary
(ané in certsin cases, a sufficient) condition for time-optimslity, In
taking this approach four costate variables are introauced. Thus the
optimization problem is one of solving an equivalent two point boundary
value problem, Exact optimal controls in terms of the initial costate
and minimum final time are then determined for certain classes of state
boundary conditions. In those cases where direct solutions sre not
available, a Newton-type iterative procedure is employed to solve the
two point boundary value problem. 1In all cases the optimal control is
ultimately expressed in terms of from one to four dimensionless
physical parameters which include: vehicle geometry, spin rate, thrust
magnitude, moment arms, initial state, and desired final stete, 1In
. this manner families of solutions are generated with a modest expendi-
tu;e of computation time,

In cases where the total angular momentum vector and the spin
exis are aligned at the initiation and termination of control three
modes of operation which characterize optimal steering are defined.
Thesc include the two limiting cases where, for example, the control
magnitude is very large (small) compared to the angular momentum due

to spin. The third mode is characterized by the transition region
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between the "short" and "long" time solutions. In the latter case,

the maneuver duratior may be from one to ten revolutions of the space-
craft about its axis of symmetry. Finaily, for certain values of the
dimensionlecss physical parameters the response of the non-linear system
is typified by that of the lirear plant. Hence the results of this
report are useful in determining the minimum time required for

sxbitrarily large reorientations of & vehicle's spin axis.
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CHAPTER 1

INTRODUCTION

1.1 The Problem Description

The primary objective of this resesrch was to investigate the
problem of minimum time attitude control of axially symmetric spin-
ning spacecraft where control is provided by various combinations of
thrust limited reaction jets or small rockets. Major emphasis of the
study was the development of techniques for the analysis and design
of f£light control systems where errors in the spacecraftts ettitude
and angular rates must be reduced in minimum time. Specifically, both
analytic and numerical procedures were employed for synthesizing opti-
mal control systems used for properly orienting a spinning spacecraft
with respect to specified reference directions starting from known
initial zondivrions of the vehicle's attitude and transverse angular
rates,

In the literature one finds that most papers on the attitude
control of spinning spacecraft can be grouped int> the following dis-
tinct classes: (1) discussions of the vehicle!s motion end stability
when some type of passive control is employed (a nutation damper),

(2) designs for multi-impulse or continuous control schemes(mini-
mizetion of & cost function is not considered), and (%) procedures
for synthesizing both open and closed loop optimal controls (the

performance criterion may be fuel, time, or power). Tn those papers
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which deal with the problem of controliing & spinning vehicle in minim-
mum time the major emphasis has been placed on synthesizing control
laws for various idealized analytic models. Thus, it does not appear
that a general theory for the time-optimal control of spinning
spacecraft has been developed., An ideal gereral theory would; (1)
1{1luminate the basic structure of the problem 80 that it can provide a
foundation upon which to base the analysis and design of flight control
systems, (2) provide snalytic and computational procedures for synthe-
sizing open or closed loop controls, and (3) form a foundztion for
synthesizing new procedures which would be useful in solving more com-
plex problems, In the rescarch discussed in this report emphasis has

been placed on Items (1) and (2),

1.2 Discussion of the Problem

It is well knowm that a rigid axially symmetric body which is
spinning about a principal axis of maximum or minimum moment of
inertia maintains a stsble orientation relative to an inertial frame
when the vehicle's total angular momentum vector, the angular velocity
vector, and t.e spin axis all coincide. 'owever, for most mission
requirements the inherent stability of a spinning vehicle must be
augmented by either an active or passive control system, The type of
control device employed depends, of course, on a variety of factors
which includes the error that can be tolerated in the terminal con-
ditions and the time over which a maneuver must be carried out, For
example, passive dampers that dissipate energy can reduce unwanted

transverse angular rates but do not, in general, provide ceoatrol over
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both the vehicle's attitude and nutation rate, Therefore, duc to the
action of disturbance torques and the resultingz motion of the desired
spin axis orientation or the requiremernt for exact reoriemtstions of
the vehicle's spin axis, it is necessary to provide an active control
system, In summary, one can describe the basic functions of an active
system as those of maneuvering the vehicle 1% 8 prescribed manner and
stabilizing it (reducing the transverse sngular rates to zero) when

-8 desired orientation has been acquired.

Over the past years various devices have been employed for con-
tre ' ling the attitude of space vehicles, For exsmple, an active con-
trol sy.tem designed for station keeping may employ magnetic torquing;
however, when rapid z¢rreciions must be made in the vehicle's attitude,
one would normaily design the control system to include reaction jets
or small rockets, Mass expulsion systems appear to be the most versa-
tile method of alte;ing the spin-axis direction. Such a system is
self-contained and is not &ffected by the environment of the satellite,
In addition, the control magnitudes are normally larger than those
provided by other systems of comparable weight., Changes in the vehi-
cle's attitude or transverse angular rates can be accomplished by
applying either continuous or pulsed torques norwal to the spin axis,
Controlling the system in this manner can introduce significent trans-
verse angular rates in the vehicle w. ich in turn causes the spin axis
to nutate following a correction. Some authors have assumed that the
magnitude of the controlling torques is so smsll that the spin exis
remains nearly aligned vwith the total ungular momentum vector through-

out the interval over which coutrol is applied. 1In cases wherc the
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important design criterion is minimum time, the contrel magnitude must
be larger than that considered in the previous example; therefore, the
transverse angulsr velocity and spin axis attitude must be controllec
simuitaneously. Thus, the time-optimal control problem becomes cne of
choosing from emong those admissible controls which cauvse a specified
change in state for s perticular system that ﬁteering function which
effects the reorientation in the least time,

In the present study we are concerned with the problem of con-
trolling both the attitude and the transverse angular rates of an
sxially symmetric spacecraft by means of reaction jets, For the pur-
pose of this analysis it is assumed that the system can be represented
mathematically as a rigid body with a single axis of symmetry., Also,
the vehicle is assumed to be spinning at a constant rate about its
axis of symmetry and, in addition, maey be nutating as & result of
initial non-zero angular rates about the transverse axis. The third
end final restrictive assumption ies that motion of the vehiclet's axis
of symmetry is limited to small engular excursions about & nominal
direetion, This assumption is reasonable if the attitude and angular
rate errors which nust be corrected during an acquisition mansuver eve
small or if subsequent reorientations of the spin axis are through
sngles of approximately fifteen degrees or less.

The problem specifications must also include a statement as to
the type of control device employed. For the problem considered in
this report it is assumed that control is provided by various combi:
nations of thrust 'limited rcaction jets or small rockets; the con-

troller confipurations considered are shovm in Figure 1,1, Casc (A)




corresponds to 3 single gimbslled jet which can be oriented srbi-
trarily in & plane normal to the vehicle's axis of symmetry. 1In

Case {B) coutrol is provided by four body fixed jets which produce con-
trol torques about the x and y axis. In Case (C) and (D) control is
provided by two fixed jets and one fixed jet respectively., Hexe both
positive and negative torques are produced abqut the y axis when con-
trol is provided by two jets-Case (C). 1In contrast, only a positive
(negative) control moment is available about the y axis when control

is provided by a single jet-Case (D). In Case (E) the basic spacecraft
consists of two separate secticns which are connected at the axis of
symmetry by a frictionless bearing; the aft section, which houses the
attitude sensors and four body fixed reaction jets, has a zero spin

rate about the vehicle's axis of symmetry,

(A) Gimbalied Jet (B) bk-Jets () 2-Jets
Y
~f !/
~ 0
/ \)L .
X P
/
(D} 1-Jet (E) Non-Spinning Platform

Figure 1.1 Control Jet Configuvations




1.5 Summary of Related Work

In the literature we find thet, in genersl, four bssic techniques
have been considered for synthesizing minimum time controls. The first
is to form a functional relation between the optimal control and the
state. Here a necessary condition (e.g., the maximum principle) is
used to determine the qualitative structure of the optimal steering
functions; the exact control is then specified by the instantaneous
velues of the state varisbles. This procedure is commonly referred to
88 closcd loop control, The major advantage offered by this method is
that it allows continuous feedback control since the optimal control is
knovn at each instant, However there are, in general, no known synthe-
sis techniques for determining & functional relation between the opti-
mal control eand the state for both higher order linear and non-linear
systems when the cost functional is time. For lower order systems it
is possible to relate the position of the state point X to the switch-
ing surface and thus determine the sign of the control function u(X).
This technique has beer applied by Athans, et al. [1) and Gruber,
et al. [2) to the problem of minimum time angular velocity control of
s spinning axially symmetric spacecraft,

A second procedure which has been considerec by various suthors
also relates the control functionally to the state and is a useful
approach for feedback control systems. This method is often referred
to as quasi-optimal control, Here the desirable features of closed
loop control are retained, in addition, the computational task asso-
ciated with synthesizing true minimum time controls is reduced. This

is accomplished by approximating the truec minimum time control by a
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nearly time-cptimal control. As could be expected, the difficulty of
the synthesis probiem depends upon the error that can be tolerated
between the exact cptimal control gnd the approximation. Such & pro-
cedure has been applied to a satellite attitude control prdblem by
Friedland [3].

A third commonly used method for computing the minimum time comn-
trol corresponding to specific boundary conditions is the iterative or
successive approximation technique, In contrast to feedback control
the iterative methods normally give the entire control law rather than
en instantaneous value of u. Thus one could observe the state at dis-
crete times and solve a number of two point boundary vslue problems in
order to determine the optimal control. In general, two types of
iterative procedures hsve been investigated in the literature., First,
those schemes which systematically adjust the control (steepest de-
scent, second variation, etc.) until specified boundary conditions are
satisfied; and second, those methods which rely on a trial &nd erro:x
process, An extended form of steepest descent was employed by Hales
and Flugge-Lotz [4) to determine minimum fuel controls for a rigid
body in orbit. The latter was used by Bass [5] in an attempt to solve
the non-linear, minimum time, control problem. A drawback of iter-
ative schemes is the length of time required to compute the optimal
<ontrol. In most cases the computation time has made it impossibie to
employ iterative techniques to generate optimal controls in feedback
systems,

Finally, therc axe those solutions obtained from an intuitive

analysis of the attitude control problem. In many cases the model
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representing the physical system has been simplified {e.g., reduced to
a lower crder system) or restrictions have been placed on the control
system (e.n., impulsive thrusting, very lew thr it, etc.) thus allowing
one to solve the optimal control problem by inspecticn for certain
initial and final values of the state variables., Studnev [6] investig-
ated the problem of controlling both the spin axis attitude and ang-
ular rates for a number of '"mixed" cost functigns when the control is
impulsive, Poralli and Connclly [7] used a similiar approach to obtain
minimum fuel impulsive controls for a fourth order linear model of a
spinning spacecraft.

In past studies of the attitude control probler where one or
more of the aforementioned techniques are applied it is often the case
that relatively 1ittle insight is provided as to the performance capa-
bilities of physically realizahle control systems. These analysis have
not, in general, considered the inter-relation between the actual phy-
sical system, the type of controllers employed, and the initial acquis-

ition or subzequent reorientation maneuver which must be carried out,

1.4 Summary of the Present Work

The following are the principal contributions c¢I this study:

1. As a means of illuminating the structure of the time-optimal con-
trol problem this study provides answers to the following ques-
tions., For a given vehicle configuration what is the minimum time
required to carry out a specified change in attitude? How do the
system parameters affect the minimum reorientatica time? What are

the characteristics of the optimel control in ter-is of the syvsten




parsmeters? For a given rate of propellant experditure how do
various control jet configurations cowpare with one another in
terms >f the minimuem time required to reorient the spin axis

through s given sangle? Csn one find analytic solutions to the
optimal control problem for certain coutrol jet configurstions?

In view of these objectives exact time-optimsl controls have
been determined for a wide range of vehicle configurations and spin
axis stti*ude errors when steering is provided by those control
systems depicted in Figure 1.1. It is of interest to note that
Controllers (D) and (E) are not usually considered in the litera-
ture, In sddition, it is found that Control System (D) with un-
iimited control power cannot, for the class of bcundary conditions
considered, 2ffect & given transition in the state point over an
arbitrarily small interval of time, and that (E) is not normal.
Moreover, since fhe jet configurations shown in Figure 1.1 are
physically realizable the results of this study should be useful in
the design of active control systems. For example, a comparison of
performance capabilities shows that certain jet configurations are
"better" than others; and, in addition, that savings in time snd
fuel can be obtained through an appropriaste sclection of both the
vehicle's geometry and the thruster configuratior.

The maximum principle approach to the optimal corntrol problem
results in the rcquirement for solving a two point boundarv value
problem. For most higher order systems it is ne:, in general,
possible to solve directly for the optimal contr:cl in terms of the

error between the actual and desired state peint. For lower order
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systems (control of a vehicle's angular rates) Athans, et al. {1)

were sble to relate the state point to the switching lines and

thus chYtained the optimal conirol in feedback form. In this study
synthesis procedures sre employed which involve both closed form
solutions and a combination of closed form with a numerical iter-
ative technique. In those cases where it was not possible to
obtain the optimal control directly an iterstive scheme similar to

Newton's method was used to solve the two point boundary value

problem., This algorithm was developed in view of the peculiar

characteristics of the attitude control problem (the system is non-
aiseipativz, optimal control for Jet Configuration (D) contains
coast periods, and optimal steering for System (E) may be non-
unique) and is described in Appendix A. Several unique features
of this numerical method are:

a) In certain éases inequality constraints are placed on the mag-
nitude of several components of the initisl adjoint vector and
on the magnitudes of the computed corrections to the adjoints
snd final time,

b) £ systematic method for crossing switching surfaces is proposed
which takes advantage of the apparent "smcothing” (a reduction
in the magnitude of the discontinuity of the support hyper-
planes at the corners) of the isochrones as the dimension of
the control vector increases,

The advantage of using both analytic and numerical schemes in
conjunction with a normalized state rcpresentation of the system is

that families of solutions are gencrated and plotted as graphs with 2
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modest expenditure of computer time, From the grasphs onc can readily
deteramine both the optimal steering law and the wminimum final time.
At this point it should be noted that optimal controls are only giver
for certain classes of error signals., Therefore, the results of this
study would not, in general, be used to generate optimal contrels in
feadback systems, However, under "ideal" conditions numerical proce-

dures such &s the one described in this study could be employed to

synthesize "usable" steering commsnds.

e e s AN
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CHAPTER 2

PRELIMINARY DEVELOPMENTS

In this chapter the coordinate frames arc defined; the equations
of motion required in subsequent chapters are developed; and some con-
trol theory notions pertinent to the asttitude contrel problem are
presented,

2.1 Coordinate Systems

There are a number of factors that one must consider before
choosing a particular coordinste geometry-among these are: (1) the
effort required to determine either closed form or numerical solutions
to the resulting system of equations and to esasily obtain a physical
interpretation of the results, and (2) mechanization requirements that
constrain the manner in which various control sources must be repre-
sented. The fundamental coordinate systems required are shown in the
. following two figures,

Figure 2.1 defines the position of the vehicle relative to an

inertially ststionary (Xl, Y ZI) coordinate frame where the X_ axis

I

forms a fixed angle with respect to the vernal equinox and the ZI axis

I,

is normal to the orbit plane, It will be useful in the following dis-
cussions to define (XR, Yo ZR), hereafter referred to as Coordinate

System I, relative to the (X ZI) reference axis, This definition

19 YI’

is made in terms of the angles ¢', ¢', and "' as shown in Figure 2,1,

Two additional reference framcs arc defined in relation to
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Coordinate System I. 1In the analysis which follows it is assumed that
the motion of the spin axis is limited to small angular excursions
&bout the ZR axis -~ a nominal direction. Thus, for this type of motion
the position cof the vehicle's spin axis with respect to Coordinate
System I can be conveniently defined through the use of Euler angles;

this would not be the case for arbitrarily large valuves of attitude

Reference

%/n_ Place

“\\~—-Orbit Plane

Figure 2,1, Definition of the (XR’YR’ZR) Coordinz:ze System

error since the rate of change of one of the angles vill become un-
bounded for certain attitudes, The orientation of thro body fixed
principal axis (x, y, z), hercafter referred to as Ccordinate System
111, is specified by the Euler angles ¢, g, and ¥ as shown in

Figure 2.2, The order of rotation is a precession ol the line of
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nodes @ about ZR, a tilt g of tbe spin axis about the line of nodes,
and a rotation ¥ about the z axis. The angles ¢ and o that the spin
axis makes with respect to Coordinate System I regre;ents the body
attitude error,

The (x', y', 2') coordinate frame, hereafter referred to as Coor-
dinate System II, is also defined in Figure 2.?. This system is the
result of "de-spinning” the body fixed (x, y, z) reference frame,

Thus, Coordinste System II has & zero spin rate with respect to the z

axis,

%

Figure 2.2. Definition of the (x,y,z) end (x}y%z")Coordinate Systems

The fundamental coordinate transformation between Reference Frames II
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and III can be written as . :
e ] | i 0 i - |
e -
' cos B sin g e
. e,| ={sinp cosp O}le (2.1)
y y
e
3 z'J 0 0 1 e,
2 where
- =w t+s . ]
B =Wt . o

Z A oy

2.2 Equationg of Motion

It is well known that the angular motion of a rigid body may be

P g

described by the Euler equations:

o T R

1,006 (e ()(1 -1,) = 1, (e) (2.2)
% g Iy&y(t)-wx(t)wz(t)(Iz-Ix) = My(t) (2.3)
8 Iz(éz(t)-wy(t)wx(t)(Ix-Iy) =3, (¢) (2.%)

i where the dot denoteg derivative with respect to time.1 Also, in the

: analysis which follows the moments of inertia are assumed to be con-
stant throughout the interval over which control is zpplied. 1In
general, a vehicle's mass changes less than 5% due to the expenditure
of propellant during a nominal reorientation maneuver; therefore, this

; is not an unreasonable assumption.2 I1f the z axis is the axis of

symmetry then Ix=Iy=I. We can now rewritc the Euler equations as

follows:

. I Nk(t) :
w (t) = (1--3-)uz(t)wy(t)+ 7 (2.5)

1A derivation of the Euler equations can be found in Goldstein [3],

: 2Typical fuel requirements are presented in [9].
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. 1, L . M (t)
wy(t) = (1- ) w(t)o (£)+ -2—-—-1 (2.6)
o, (t) =0 (2.7)

The last of these equations results in wz(t)-wszconstant since external
moments about the z-axis are assumed absent.

For Controller Configurations {A) and (E) it is desirable to
write the transverse angular velocities with respect to Coordinate
Syétem 11. Applying the transformation given by (2.1) to equations
(2.5) and (2.6) we find

M (t) M (t)
(Bx.(t) =- ..i’_ w.u)y,(t)-f- xIt cos B --z—Ii- sin g, (2.8)
I M (t) M (t)
&y.(t) = -ig w'wx.(t) + Eaeee gin 5+-y—1-— cos B , (2.9)
vhere
wx,(t) = wx(t) cos a-wy(t)sin B, (2.10)
wy.(t) = wx(t) sin s+my(t)cos B . (2.11)

Using the Euler angle notation given in Figure 2.2 we can derive
the following transformation that relates Wers wy,, and Wy to the time

rate of change of the Euler angles:

we(t) =g sin g sin ¥ + § cos ¥ (2.12)
W, {t)=¢ sin g cos § = g siny (2.13)
W, 1 = cos g + v . (2.14)

For small angular excursions about the Z_  axis sin g and cos ¢ may be

R
represented by the first order terms of their respective power series.
Thus, sin g = g, cos 9 =1 when terms of 0(92) are neglected., In

addition, vy = 0 since Coordinate System II docs not rotaie ahout the
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f; z' axis. Equation (2.14) is now integrated with the following rcsult

o) = ~y(t)+c. (2.15)

é As will be shown in the following paragraphs this relation allows us %o %
’7 represent the spin axis attitude in terms of rotations abcut the x' and %
% y' axis. 3

g El

¢ ;
2P In the absence of external torques about the z axis the spin rate 3
: '

- remains constant,and therefore the spin axis attitude can be con- g
3 !

? veniently represented by the (XR-YR) components of the angulay momentum i
i ' vector I w e as shown in Figure 2.3. 1
P { 2 8-2 ‘

ZR
- ]
} I w
zs
5 y-e ‘
|
s l
I L;
l Y
| R
i L;
Izws ] -
. Figure 2.,3. Definition of L; and L;
Define the Xg and Y, components of Izwsgz‘by: . ’
. ,
L(t) = Lw g sing (2.16)
L:(t) =-1w_ 6 cos g. (2.17)

Differentiating the above equations with respect to time and after com-

bining the results with Equations (2.12) through (2.15) we find:
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i;(c) = -Izwswx,(t)
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(2.18)

(2.19)

Thus p; and L; are directly related to the ihtegral of the .rotation

rates about y' and x' axis respectively.

spinning vehicle can now be written in vector form as follows:

-

w.(t)

w;.(t)

2l

Lo (t)

;L;(t)

P =

wxo(t)
wy.(t)

L (t)

Ly(t)

- o

(o]

0

ok fomt

-4 -

M, (t)

My.(t)

o b

The control moments which appear in (2.20) are defined by:

M&.(F) = Mx(t)cos 5~My(t)sin B

My,(t) = Mx(t)sin 5+My(t)éos B

The equations of motion for a

(2.20)

(2.21)

(2.22)

As will be shown, Equation (2.20) is a useful representation of the

system when control is provided by Thruster Configuration(A). In

_addition, integration of (2.20), providing Mx(t) and My(t) are known,

gives the instantaneous position of the spin axis which is required if

minimum time trajectories are to be plotted in the (XR-YR) plane.

For the remaining controller configurations, Cases (B) through

(E), it is convenient to describe the spin axis attitide in terms of

the total angular momentum of the system.

This approach is desirable

from a computational standpoint since the equations representing angu-

lar velocity are uncoupled from those representing angular momentum.

The spin axis attitude can be readily dctermined if one expresses the
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systems total angular momentum with respect to Coordinate System I.

Components of the total angular momentum about the X  and Y_-axis are

R R
the result of two contributions: a projection of the angular momentuia

vector Izwagz onto the (XR-YR).plane and the XR--YR components of the

transverse angular momentum ng and Iw&. Thus, the XR and YR compo-

nents of angular momentum, when the spin axis is restricted to small

angular excursions about the Z_-axis, are given by the following

R
expressions: -

Iw&,(t) +Lw 6sing (2.23)

Ly(t)
L,(t)

A geometric interpretation of Lx and LY is presented in Figure 2.k.

Iwy.(t) - Luw, g cos g (2.24)

L R

Figure 2.4. Definition of Ly and Ly

Differentiating (2.25) and (2.2h) with respect to time and combining

the result with (2.8) and (2.9) we find:

L (t)

L, (t)

M. (t) (2.25)
My,(t) (2.26)
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When control is provided by Thruster Configurations (B) through
(D);, it is convenient to represent the spin axis attitude by Equations
(2.25) and (2.26) and to use the Euler equations, (2.5) and (2.6), to .
describe the transverse a;gular velocities with respect to the body

fixed reference frame. Thus, the controlled equation becomes:

oo - o -~ - r - -
' 1. ]
ux(t) 0 yu, 0 wx(t) T 0
: 1
o)y(t) -, 9 0 0 wy(t) .0 i Hx(t)
= + (2.27)

ale

gx(t) O 0 0 o Lx(t) cos g -sin & Hy(t)

fY(t{ 0O 0 o0 o LLY(c)- sinpg cos g

L . - J L d
fhe con;réller depicted in Figure 1.1.E employs a non-spinning
platform which is mounted to the vehicle by a frictionless bearing;
therefore, the thruster§ are gtationary with respect to Coordinate
éystem I1. For this control system it is convenient to use Equations
(2.25) and (2.26) to describe the spin axis attitude and the trans-

formed Euler equations, (2.8) and (2.9), to represent the vehicle's

transverse angular velocities. Hence, the controlled equation is:

[ 1T 1w 1T 17 1T |
W (t) 0 -—'I--9 0 offu.(t) % 0
Izws 1
; wy,(t) - 0O o0 0© wy.(t) o 7 Mx,(t)
b1 ( = (6 + 0 (2.28)
Ly t) 0 0 0 O0f]Lfe 1 © uy. t
LLY(;)- - 0 0 o o‘ _LY(:) | Lo 1_ ] ]

In order to complcte the mathematical formulation of the problem

we must specify the control vector which appears in Equations (2.20),

s
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(2.27), and (2-28) in accordance with the physical limitations of each

control jet configuraticn.

et
T

This process is carried out in Chapters 3

sy

through 5 where the problem of synthesizing optimal control laws for

R et

each of the five jet configurations is investigated in detail. Speci-

fically, the mathematical problem to be considered is one of selecting
a control vector y(:):nx(t)gx+My(t)gy from am?ng the admissible con-

trols which will take each of the fourth order systems from a specified

initial state to a desired terminal state in less time than any other

admissible control.

2.3 Some Pertinent Control Theory Concepts

£S
g g o ST 54 Ty HR NI B

The purpose of this section is to formally define some control
g : theory notions which are pertinent to the attitude control problem
(controllability, normality, etc.).

Definition 2.1 (The Optimal Control Problem)

Let U([to,t ];Q) be the input space of a given dynamical system.
! ' Let (x(t),u(t),t) a continuous function from R X Rq X [to,tfl into
R, and define

1
t, '
3ot yile)) = [F (xe) e e (2.29)
t
to be a performance functional mapping Rn x R1 x U into Rl‘ Then the

optimal control problem is defined as: find the control sequence g(t),

te[to,tf], which drives the state from 50 at time to to the desired

final state X, at time t. (tf not necessarily given) such that

J(zo,to,g) is minimized (maximized).

In this study the vector X(t) represents the vchicle's attitude

3 angles and rotation rates and must satisfy a linear differential

a

!
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equation of the following form

Xt) = ax(t) + 3(e)u(t) = £(x(e),ule),¢) (2.50)
where Zé’to*xf are given and the sliowable control sets corresponding
to Jet Configurations (A) thru (E) are:

Scheme }

wo(eden, o, =Cule): [o(e)nd () g 1) (2.31)
Scheme B

up(edeny op =( u(e):]u (e)|<t, fu (e)[< 1) (2.32)
Scheme C |

ueltdeag g =C ule): u (&) = 0,]u(e)|<1) (2.33)
Scheme D

u(tdey ap=( u(t): u () =0, 0gu, (£)<1) (2.34)
Scheme E |

ug(tleny ap =( wlt): Ju ()<L, [u, ()]<) (2.35)

The controls gﬂ(t) through gE(t) are defined in terms of both the maxi-
mum thrust produced by the gas jets and the moment arms in Sections
3.1, 4.1, and 5.1, Note that the bounds on the components of the con-
trol vectors were determined under the assumpg}on that the maximum rate
of fuel flow is the same in each of the five control schemes, This
appears to be a fair way of cowparing performance capabilities.
Definition 2.2 {Complete Controllability)

Assume that in the definition of control sets oy thru QE’,IE(C),I

. 5 3,
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is unbounded. Then System (2.30) is said to be completely contfollable
on a finite interval [t otg ] if for every state x eR at time t aud
any desired final state Zf
defined on [to,tf] such that Z(t£)=z%.

at t.,X.eR , there exists a control u(t)

Under certain conditions it may be required to carry out a«gi&ens
change in the state point when the interval [Eo,tf] is arbitrarily
8msll. This naturally leads to the question as to whether a system can
be driven from some initial state X,att toa desired final state X,

at tf when [t t! ] is a subinterval of [t ,tfl

Definition 2.3 (Total Controllability)
' System‘(Q.jo) is said to be totally controllable on an interval

{t ,tf]'if it is completely controllable on every subinterval of
[t.te]. :

1f o(¢t,t ) is the transition matrix for (2.30) and O(t t ) =
Q(t,to)B(t) then the necessary and sufficient conditions for complete
and total controllability can be summarizéd as follows:
Theorem 2.1

System (2.30) is completely controllable on an interval [to,t ]
if and only if the rows of ;(t,to) are linearly independent functions
of t on [to, tfl.
Theorem 2.2

System (2.30) is totally controllable on the interval [to,tf] if
and only if the rows of ¢(t,t°) are Iine;rly independent functicns of t
on every subinterval of [to,tf].

Note that Theorems (2.1) and (2.2) only provide necessary con=

ditions for complete and total controllability when rzstrictions are
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.placed on the admissible control. From-the necessary and sufficient

conditions for complete controllability we find:

1. For System (2.20)

Izwst Izwst:.
cos 1 sin I
- 1 ITwt I wst
o(t) = T |-sin cos -3-{—- (2.36)
i 1 0]
0 1

2. For System (2.27)

a) b4 - Jets
-;- cos(ywst) . %’ sin(ngt)w
;(t) = -;- sin(ywst) % cos(ywst) (2.37)
cos B -sin B
sin B cos 8

b) 2 - Jets and 1 - Jet

- -

1
- 7 8in (7wst)

;(t)= %cos (ywst) (2.38)

- . . . "Sin B

cos B

3. For System (2.28)

Y
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'}' cos (E'Iz' mst) 'IL sm(z%“mst)
~ : 1 1
o(t)= --il:- sin (--zf wst) % cos (—% wst) (2.39)
1 0
L ° '

Note that in the above equations we have assumed that t, = 0. Thus, in
the three systems considexed the control can influence each component
of the state vecteor for all te[to,tf]. Hence, in the absence of re-
strictions which may be placed on the admissible control sets, the
systems are both completely and totally controllable. However, we note
that Control System (D) can be defined as: 0 < uy S.by: B(t) £ 0;

-by S,uy <0, B(t) =C. 1If by is unbounded then g becomes the line
(~wsw). Moreover, if ﬁy < 0 then B(t) = 0 and the system is neither
“»mpletely or totally controllable.

Definition 2.4 (Maximum Region of Recoverability)

An element of R.n is a recoverable state in [to,t] with respect to

X, if there exists an admissible control which will drive the system

f

from this state at to to state zf at time t,

recoverability with respect to Zf in [to,t] is the set of all recover-

able states in [to,t] with respect to Xge

region of reachability with respect to Zb follows directly.

The maximum region of

The definition of a maximum

From Theorem 2,1 we found that the concept of controllability iy
basically concerned with the type of coupling that exists between the
input and state of a system. However, when the input vector is con-

strained to belong to a compact, convex subset () of its vector space
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the question of recoverable (reachable) -states becomes important, That
is, if we wish to synthesize optimal controls for a wide range of
boundary conditions (flooding) then it is desirable to know a priori if -
all states which conform to the small angle approximation are recover-
able (reachable) when control is provided by the thruster configura-
ations depicted in Figure 1.1,

Following the work of LeMay [10] and others we find that when
certain conditions are satisfied, namely:
1. System (2.30) is completely controllable for a general time to.
2., The matrices A and B(t) are piecewise continuous in t, ty, < t< o
3. The input is admissible (u(t) is measurable and u(t)eq).
then a necessary and sufficient condition for the entire state space to
be recoverable is given by the foliowing theorem.

Theorem 2.3

The entire state space is recoverable in (to,w) if and only if

f ||(¢(to,t)B(t)) pldt = w, all 0 %0, 0 eR (2.40)
t\.
0

where for convenience the vector norm || | is deZined by
n
= 3
UKJI" Z:lxil~
i=1

It is readily shown that the necessary and sufiicient condition
provided by Theorem (2.7) is satisfied by Systems (2.20), (2.27), and
(2,28); therefore, all states which conform to the small angle re-

striction are recoverable wh:n contrcl is provided by the five jet

jLaSalIe {11) defines systems which satisfy this coniition as "asympto-
tically pioper"”.




a1

configurations depicted in Figure 1.1, However, in the flooding proc~
ess we are also concerned with reachable sets since in most cases
optimil trajectories are computed between a fixed initial state (the
origin) and 4 selected number of different terminal states. The prob-
lem was formulated in this manner since it is somewhat eésier to show
symmetry properties of the optimal control when the initial state lies
at the origin. The control problem considereé here can be easily
transformed into regulator form since the real parts of the eigenvalues
for Systems (2.20), (2.27), and (2.28) are zero; therefore, if the
entire state space is recoverable with respect to the origin then it is
also r.:.chable with respect to the origin.

Comment 2.1 {Some Properties of the Maximum Reachable Set)

Providing the assumptions listed in [10] are satisfied (the sys-
tem is totally controllable, the control set is compact and convex,
etc.,) one can show that the maximum recoverable set (in this case also
the maximum reachable set) is compact and convex and is symmetric if @
is symmetric. Furthermore, for t > to’ the recoverable set has dimen-
sion n, grows continuously and strictly monotonically with t in the
interval to < t < ©, and contains the origin as an interior point.
Definition 2.5 {Minimum Time Isochrone)

The minimum time isochrcne is defined by the relation
x(t) = (x(t): % (5f) =t;t>t j. (2.41)

~
Since the boundary of the maximum recoverable set in (to,t ) is the
’ ]

minimum time isochrone and in view of Conment (2.1) we find that the

surfaces defined by t? = constant have certain symnotry properties

when control is provided by Jet Configurations (A), (8), (C), and (E).
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However, control set o is not symmetric and, in addition, does not
contain the origin as an interior point. Therefore, the maximum re-
coverable (reachable) sets may not grow continuously in all directions
with time. Consequently, System (2.27) may not be controllable over an

arbitrarily small interval of time even if unlimited power is available

to the control system.

2.4 The Maximum Principle

The Max;mum Principle of Pontryagin is one of the most useful
theorems available for the solution of optimal control problems. The
proof of the theorem is discussed in detail in [12] and [13]. The
necessary condition for optimality provided by this principle, as it
applies to the attitude control problem, is stated here without proof.
Theorem 2.k

Let .f.(.).i.’!‘.(t)’t): EXQS:E,':). .f.t(?'.:.".’.st)’ J.'.(.’S,B.»t), Ix(.’_(.:l-‘.:t)»

é[;(l,g,t) be continuous on R'1 X R1 x 0. Define a continuous function

i ian b
from Rh X R,q % Rn X R1 into R1 as the Hamiltonian by

B(x(t),u(t),B(c),B_,t) = PLx(¢),u(t),t) + (2.42)
<p(t), £(x(t),ult),t)>.

1f Ef(t), tE[to’t?]’ is an optimal control sequence in U([to,t*];g)

then there necessarily exists a constant P§ and an n-vector g*(t) such

that
B(x"(e),u*(e), B*(e), PY,e) > m(x'(t), u(t), P*(t),P:,t) (2.43)

g_(t) € Q

where:

*
l. P,<0
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. B0 = - 1 ((0), u'(e), B(e), 7, ©)

VAN il AR

b (8 = 1000, o0, B0, B, b

5. x*(t°)= %, x*'(t:) = X¢

If the plant is autonomous and tf is "free" then

B(X(¢), u*(t), B (1), P:) = 0.

PRTVRNE e S

An application of the maximum principle transforms the optimal

s

control problem to a two point boundary value problem. To solve the
latter we must determine the optimal control (i.e., solve for both the
n-vector gf(t) and the final time t:) that takes the system from a
specified initial state to a desired final state, For the attitude
control problem considered in this study we have assumed that the ini-
tial and final states are known; thus, the problem becomes one of
selecting the ordered pair (P*(to), t?) such that the state is driven

from ¥ to X, in minimum time. o
=0 =f

2.5 Uniqueness of the Bang-Bang Control Law

In the previous section we stated a necessary condition for the
optimal control. Perhaps the most useful result of Theorem 2.k is
that it serves to limit the search for E#(t) to a specific class of
controls, e.g., the class of bang-bang controls. However, even though
a control is found which satisfies the necessary condition there is
still the question as to whether the control is globally optimal. This
dilemma can be resolved when the allowable control set is of the form

-b, < u, <b, b, >0,b,>0,1 1, 2,...q, through the conzept of

1 2’ 1 2
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norxmality.
Definition 2.6 (Normal Control System)
System (2.30) is said to be normal if for each j = 1, 2,...q the
functions 8{(t,to),..... ;i(t’to) are linearly independent'on each

interval of positive length (5j(t,t°) is the jEE column vector of

O(t,to)). This is equivalent to raying that ghe system is controllable

e ln N iy

with respect to each component of u(t).
Theorem 2.5 . §
If the linear system 2Kt) = A(t)zﬁt) + B(t)gﬂt) is normal then \
the time-optimal control is unique (1f it exists).
For non-normal systems which are controllable the most that can
be said is that there is a bang~bang steering function that is optimal.
However, there may be other control laws which cause a specified change
in the state of the system in the same minimum time. In view of the
definition of normality we find that System (2.27) is normal when con-
trol is provided by Jet Configuration (B) thru (D); therefore, the
optimal steering functious are unique and, in addition, must operate
u?(t) an "on-off") mode.

-D
Control System (2.28) is not normal sincc the elements of each

in a bang-bang (in the case of

column vector of (2.39) are not linearly independent - consequently,
there may be an infinity of optimal steering functions. However, this
system is, according to LaSalle, "proper"; from Reference [11]) we find
that in proper control systems optimal steering has the property that
at any given time some component of g?[t] assumes an oxtreme value.
The implications of normality and properness will become evident in

Chapter 5 where the optimal steering law for [2.28] is derived., For

-
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Jet Configuration(A) we £ind that the optimal control is a continuous
function of time; therefore, the Hamilton-Jacobi equation provides a

sufficient condition for optimality.

2,6 The Hamilton-Jacobi Equation

In cases where the cost functional is sufficiently smooth the
Hamilton-Jacobl equation provides both necessdry and sufficient con-
ditions for optimality.

Theorem 2.6

Let H(ng’%:.‘bt) be the Hamiltonian of our problem, Let G(t)
and g(t) be admissible controls such that
1. The function H(K,E,Po,g_,t) has a unique absolute maximum with re-

pect to all u(t)e 0 at u(t) = u(t) for each point (x,t) in
(R xR).
2. 1(t) transfers (xo,to) to (xf,tf).

3. If 3(t) is the trajectory corresponding to 0(t) then (2(t),t)e

R xRy for t in [to,tf].

t

L, There is a solution ?(_)_(_,t) of the Hamilton-Jacobi equation

_Aq(x,t) H[X, A(x,t) o = 5

, a(x,
ot

Jx,t) t]_
3X X

such that

33 (W), t),¢)

&) = 1(¥o), &

[}

N
Then Ix\_(t) is an optimal control and _)_(_(t) is optimal trajectory in»..Rn.

.
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CHAPTER 3
REALIZATION OF OPTIMAL STEERING FOR THE GIMBALLED JET

In this chapter we consider the problem of controliing in an
optimal manner both the attitude and the transverse components of ang-’
ular velocity of an axlially symmetric spinning spacecraft when control
is provided by a reaction jet or small rocket. Specifically, a tech-
nique is proposed for synthesizing time-optimal steering commands for

the control jet configuration depicted in Figure 3.1. A summary of the

work presented in this chapter can be found in Reference [14].

3.1 The Equations of Motion

The gimballed jet corresponds to a control moment of limited
magnitude whick can be oriented arbitrarily in a plane normal to the
vehicle's axis of symmétry. Assume that the single jet delivers a

thrust ?(t). The controller is gimballed; therefore, the thrust vector

.ixt) can be decomposed into two components f;,(t) and f;.(t) as shown

in Figure 3.1. The thrust components f;.(t) and f;,(t) cause torques
a.f;.(t) and a.f;.(t) about the x' and y' axis respectively. If the

thrust vector gzt) is bounded in magnitude by F then
L)
IECe)) = F. (3.1)

The components of thrust ave related by

IEwi =520 + B30 (3.2)
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hence
Qﬁ(ﬂ-+§ﬁ(ﬁ £ . " (3.3)
Define the vector BA(t) by
A\
g, (e) = &) (3.4)

®

The components of EA(t)’ denoted by ux.(t) and uy,(t), are restricted

by

ux?(t) + uy?(c) <1, (3.5)

Thus, the adwissible control space QA is a circle of unit radius in R2.

The torque components Mx'(t) and My,(t) can now be expressed as:

Mk'(t) = N'ux,(t)
(3.6)
My.(t) = M'uy'(t)
vhere
M = a.F.

Combining (3.6) with {2,20) allows us to rewrite the equations of

motion as follows:

" - _ i N -
C;,(T) o -1 ¢ 0 fo.('r)T 1 o ( _
u a(T)
® (1) 1 0 0 ofl&a.(7) o 1{[*%
d y J .
-a-'r ~ = ~ .
LX(T) o 1 0 0 LX(T) o 0 uy'(T)
TY(") -1o0o 0o of|L(v o oft -
: i ! JL _ !
(3.7)

where

e

PO N S A LT

TN e € et

PR TV ISR

o b i Koy B & bb AR £ 40




T ————

A

St v

A - T . s - . P - 4

3k
I [ ' (W
(7 = zwsMx (¢) -HE =..I_Z_f°.§ﬁx_§_).
n I,u,Le(t) o Iulo(t)
(D = =5 » ()= A
T = Iiws t.

Figure 3.1 Schematic of the Gimballed Jet

The initial and final values of the normalized state variables
were chosen to be as realistic as possible and yet be of that form
which allows us to solve directly for the optimal control (3*,$K)
without resorting to an iterative scheme which reauires a digital

computer. The boundary conditions considered are:

v

B 1(0) = Ga(T,) =0

%y.(o) = Ey.(TA) =0 -
[+ ~ 3'
LX(O) = LX(TA) =0 . .

~ ~ ~ I:b);cf

LY(O) = 0, LY(TA) = -l = -2
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" : ~ ~n »n ~
Solving (3.7) for wx'(TA).’ wy'(TA)’ Lx('rk), LY(TA) subject to (3.8)
and after straightforvard mathematical manipulation we can write the
following set of governing equations which must be =atisfied by the

optimal control:

?&
f[ux,('r)cosr + uy,('r)sin‘r Jdt =0 (3.9)
° T, ’ .
]}ux.(r)sinr - uy,(r)cos t]ldt =0 (3.10)
)
TA
f[ux.(“f)]dr =0 (3.11)
o ,
f[uy'('c)]df = -Ly (3.12)
o .

Thus, for boundary conditions as given by (3.8) the optimal control
'(EX’?i) is only a function of the dimensionless parameter'{Y.

At this point it should be noted that the control which satisfies
(3.9) through (3.12) ¢an be used to drive the system when Lx(tf) =0

if the de-~spun reference frame is pre-rotated in a counter clockwise

- direction through the angle Bo where

| (t,)
By = tan'l[%.(zf).] (3.13) |

Also note that the control which is defined by Equation (3.8) can be
applied when the boundary conditions are specified in regulator form
~ o2 ~ oy L Lo s

(LY(O) = Izmseo/lm, LY(IA) = 0). Moreover, it is found that such cases
arise whenever the initial or final orientation corresponds to g = O;

the problem is essentially iudependent of § (the whole problem is

AT S
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(9)

. invariant under rotation about the ZR axis).

3.2 A Necessary Conditior for Time-Optimality

The maximum principle is used to determine necessary.condftions

for the optimal steering functions. Forming the Hamiltonian
L3 ot ~
o= Py ()= (1) + ua (7)) + B (1) [© () +.uy.(-)] + B (1)

-P) (1)@ (7).

’ (3.14)
Maximization of the Hamiltonian with respect to ux,(f.) and uy,(n:)

subject to the constraints given by (3.5) occurs when

P (<)
=l (3.15)
J@ + B

P (1)

- M (3.16)
/pf(r) » Bo(7)

which implies "9-1\(1)" = 1, The variables Pl('r) through PM(T)’ called

]

“xv(T)

]

“yt(f)

the adjoints, are solutions of the differential equations

dPI(T) 3 dPe(T) S dP3(T) M, de(T) oH (3.17)

which may be written in vector form as

- - ~ -
P, () o -1 o 1P ()

; P, (1) 1 0o -1 oflr(x)

ar = olle. ’ (3.18)
P3(T) 0 0o 0 3 1)
Pu(T)J 0 o o ofir ()
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The solution to this equation is
~ o - 1 o]
PI(T) cos v ~-sinT 1 o]}
o
PQ(T) _ sint  cosT 0 Le,
P_(7) ) 0 0 1 o}{p° (3.19)
T
3 3
By, (7) 0 0 0 1|2}
L)L I
where P: through Pz are constants of integration. We can now rewrite
(3.19 in the Following equivalent form:
PI(T) = alcos(t + Oé) + 0 (3.20)
P2('r) = ozlsin(r +0,) + , (3.21)
P3('r) =a, (3.22)
(1) = ¢ (3.23)

3.3 Normalization of the Adjoint Vector

As given by the maximum principle the necessary condition for
optimality requires that the Hamiltonian be a maximum along an optimal
trajectory., When the cost criterion is time we find that maqu(X, u,

-——e.

. Therefore, the adjoint vector can

P, B, 7) is independent of [P ()]
be normalized with respect to one component or a combination of
several components of g.l The objective of such a procedure is fo
reduce the number of independent parameters which éuantitatively
define the optimal control, In this case normalization also significw

antly simplifies the optimal stcering functions. If the normalizing,

1Normalization of the adjoint vector is discussed in greater detail in
Appendix A,

b oS egerer
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Note that Bo is the only physical parameter which appears in the first

order terms of (4.40) and (4.41) and, therefore, represents the strong-
est influence on the location of the switching points within tie intes-
val {0, TB). 1f u° is positive then o{ and ag are shifted toward zero
when Bo is montone increasing and O 5_50 < x/b. It is readily shown
that £, is negative when 0 < g < x/li; consequently, the switch point
g{ is lost from the left end of the intervat (O, TB) when By reaches a’
value which is slightly less than x/k. The exact value of B, 8t which
this occurs depends, of course, on both the system description and the
reorientation angle and is denoted by sé (see Figure 4.3). Thus when
pb 2;5; the optimal steering functions are no longer described quali-
tatively by Switching Sequence (2-a). To determine an explicit rela-
tion between B; and the physical paramcters we must consider both

Switching Sequence (2-a) and (2-b).

Figure 4.3, Definition of gé
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results gives
(?1 - cosaa) + (P2 - sinas) = Qe (3.31)
The trajectory of (3.31), plotted in the (31-52) plane, is 8 circle
- with center at (cosE%, sinaé) end radius of & . Thus, the optimel

control cen be interpreted geometrically as shown in Figure 3.2,

? L)
2, .
A

p
i

Figure 3.2 A Geometric Interpretation of
Equations (3.25) and (3.26)

*
Here, ux'(r) and u;;(t) change with time as p traces out the eircle
defined by (3.31) in & counterclockwise direction; the position of p

at 1=0 is determined by-&a. Thus, the minimum time steering functions

ere defined quentitatively by the location of the center of the circle,

its radius, and the reference angle 1 4 32. As will be shown presently

this interpretation of the steering functions provides significant

E A aa e oo

- ingight as to the exect nature of the optimal steering functions which

satisfy boundary conditions of the foru given by (3.8).
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3.5 Spthesis of the Time.Optimal Control

The optimal control which effects the change in state deseribed
by (3.8) nust sstisfy Equations (3.9) through (3.12). Substituting

(3:29) and (3.30) into the governing equations we find that the only

terms not fixed by the system description are g and '1‘:. Thus, (3.9)

throuiﬁ {3.12) can be writter in vector forn as

2(1}) = Ko, 1)) (3.32)
vhere
[0 ]
0

3
x(T,) o

e

The mathematical problem is now one of solving (3.32) for the

pair e, 1‘:) as functions of the normalized sngular momentum ‘i'r Thus,
the problem of determining & minimum time control is equivalent to
that of cdwuting an inverse to (3.32). In general, it is impossible
to determine this inverse difectly. However, #s will be shown, the
geometric interpretation of the optimal control, as discussed in
Saction 3.4, provides the insight required to solve for (g, T:).

The task of evaluating (¢, T:) in terms of iY is carried out in
two parts, First, based on both the response characteristics of the
system when '1‘:«1 and when T:>>1, and in view of the iaoundary cond-
itions which must be satisfied, we can make certain observations &s to

the structure of the optimal control, Then, through the geometric

interpretation of the steering functions, specific eupressions for?:(z

wd £ s e -
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snd @ 3 csn be judiciously chosen which quentify u:"('c) and u:,(t) to
the point-where Equstions (3.9) snd {3.11; sre sstisfied. The remsining
tesk 1s then to solve (5.10) and (3.12) simultsnecusly fot'al 0d T, .

A

3.5.1 Optimal Steering When the Final Time {s Small Compered
to the Spin Kste

A eontrol. vhich sppesrs to sstisfy the boundary conditions when

A
) from (3.29) and (3.30) is depicted in Figure 3.3,

<<l snd, in. sddition, csn be synthesized, at’ least qualitatively,

“:1(7) “;1(1)

1] 1}
0 \ :r* T 0 V— T* T
-1l \, A 1 A

PRI

e Lo

Figure 3.3 A Candidate for Optimal Steering when T;<<1

TSI

Here, a large percentage of the control effort is about the x' axis;
3 during the first part of the intervel [O,T:] 8 positive moment is
applied to start the spin axis moving in 'the proper direction; the
control jet must then apply s braking moment in order to reduce the
transverse component of angulsr velocity which has been excited. The
controller must aleo provide a negative moment about the y' axis since
the total sangular momentum vector must be rotsted through the angle ¢
. Since the ultimate objective is to Specify§ and 'r: in terms of
iy, the above qualitative description must be translated into appro%-
; ) riate quantitativeé terms. Let us now reconsider the geometric inter-

pretation of (%.29) and (3.30). From Figure 3.2 we find that the center
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of the circle traced out by the point p must lie on a circle of unit
tadfus with center located at the origin. Thus, it appears that control
.of' the form depicted in Figure 3.3 will result when the center of the ,
circle defined by (3.31) lies at spproximately {0,~1) and when '&1 is
slightly less than unity. This ensures that u;,('c) is negative and that
the magnitude of u:.(":) is considerably larger than the magnitude of
u;, (t), except whea T = T:/2. Further, let us postulate that the center
of the circle defined by (3.31) lies at exactly (0,-1); therefore,

53 = IW/2, If this is the case then the src defined by p in Figure 3.2

" must be symmetric about the P axis if u:. () 1s to satisfy (3.11);

e
hence, 32 - %(‘r - T:).

In the following sections expressions are derived for 32 and &'3
vhen T: =T, ” = 2,&,6,..., and vhen 'f: << 1. The objective is then
to compare all results in an effort to determine expressions for &'2
av ‘&3 which are valid for all '1’:, 0< '1‘: < o, At this point it should
be noted that the "sh_étt time" control pr;:blem ('r: << 1) is discussed

further in Sections 3.5.4 and 3.7.

. 3.5.2 Optimal Steering When the Final Time 1is an Even Multiple of x

Coufidence in the above choice for 53 is further strengthened if
ve consider those terminal states for which 'r: =mr, mo=2,4,6,... .
In this case Equations (3.9) through (3.12) are satisfied when u:,('c)
= 0 and u;,('t) = «1 for 're[O,TZ]. Control of this form is given by
(3.29) and (3.30) when '&1 =0, 0 € G,s 2, and &3 = 377/2.
3.5.3 The Case When Optimal Steering is Nearly a Constant Moment
Additional insight as to both the response of the system and the

quantitative behavior of the optimal control can be gained if we
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examine the case when g*(r) is nearly a steadily applied moment about
the y' axis. Specifically, let us consider a steering function of the
following form: u;,('r)s -1 and u:,(‘r) is oscillatory with a period of
27 and amplitude of € where € << 1. The optimal steering functions as

~

given by (3.29) and (3.30) will be of this form if G,

Thus the circle defined by (3.31) has & very small radius and center

=¢ and '53335 .

located at approximately (0,-1). If we assumé that the optimal control
is a constant moment plus a perturbation of 0(&’1) then the optimal

steering functions become:

u:,(‘t) = [b’lcos(-cﬁa),» cos ?1'3] [1.&'1“,(“&2-?&3) + 0(51)] {3.33)
u;,('r) = [5lsin('r+52)+ sin &‘3][1.&1“;(“&2-&’3) + o(&’l)] (3.34)

Subst:l.t.:uting this control into (3.9) through (3.12) and after perform-

fng the required integration we find:

~1 ¥* ~ * ~ ~ a ces &’2 ~ ¥*
- Iy cos O, + sin('l‘A-o:3)+ sin o(3+ - [sin 2(c.'3- TA)
~ ~ *
- sin 2013] + o(al)TA =0 (3.35)

a &, cos O
1 % ~ * ~ ~ % > D w L ® 20
- T, sinq, + cos(TA-a3)- €08 Ot —3 l}in (a3 TA)- sin oz3}

~r ~t
a,sin O

1 2 ~ ¥ A ~ * -
=y [s:ln 2a3+ sin 2(TA-a3)] + o(al)TA o (3.36)
&1 [sin('l‘:-i- &2)- cos a3sin(TZ+ &2- 57.3) + cos &3 sin(ga- %)
~ * ~ ~ D4
- sin ae} + T, cos cx3 + o(al)’l‘A = 0 (3.37)

]
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& a’ T* ~ ~s * ~ ~s
1 |eos @, - cos (T, + a,) - sin o sin (T, + Q, - 05)

~ P ~ ¥* s s * [

+ sin a3 sia (@, - a3)] + T, sin Gy + o(a;) T, = Ly (3.38)
~ * *

Assuming that Q, = O(I/TA) vhere T,>> 1 (this appears to be a recason-

able approach if one considers the response of a spinniag body when

the term Ii@fe/IH 1s much greater than unity) and if terms of'O(I/?:)

are neglected, then the solution to (3.35) through (3.38) is written

E as foll&ws: ‘

. o z% sin %ZY (3.39)
o, 810 (cos %fy) | (3.40) |
o, = & (3.41)
AR (3.42)

Lat us now consider a geometric lnterpretation of the above

! results. From (3.39) it is evident that the radius of the circle

~
defined by (3.31) approaches zero as LY'* w; therefore, in the limit,

= optimal control which satisfies boundary conditions of the form given
E by (3.8) is a constant moment about the y' axis. Note that the optimal
i control corresponding to those state boundary conditions defined in
% ‘Section 3.5.2 is also a steadily applied moment about the y' axis.

4 i Examining the control defined by (3.39) through (3.142) in greater

detail one observes certain characteristics in common with those des~

cribed in Section 3.5.1., First, the center of the circle lies at

approximately (0, -1) in both cases. In addition, from (3.10) we find

4T Sy
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that 52 2-21-(1r - T:). Thus, the trajectory of (3.31) is nearly symmetric
about the '?'2 axis. In view of the correlation observed to this point it
appears reasonable to make the following conjectures as to the exact
structure of the optimal control:

1. The parameter 53 is independent of 7“1 {the center of the circle

remains at (0, -1); hence,

~ T

o, = & (3.13)
2. The phase angle 012 is given by

G, = r- 1) (3.44)

for all values of 7.'[.
3.5.14 Optimal Steering: The General Case

When 822 = i(r - :) and a3 = g:”-' the optimal steering functioms,

Equations (3.29) and (3.30) become:
#*

- sin (1 - T
“:'(T) ) J&‘T\»a: 2a 12 Tg)- G.19)
1 = eyeos AT =
7
*
T

”n

a.cos ('r--'-‘-)-l

(3.16)
&f-&- 1- 2&'lcos (v - ;_A_)

“:t('f)

Rewriting (3.9) and (3.10) in complex form and multiplying the results
*
31T,
A gives .

*
T, o«

‘o 13T, -

fe (2% T)[u::(r) + iu:'('c)] dt = 0 (3.%7)
o]

< o N iy

.
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Substituting (3.45) and (3.46) into {3.147), (3.11), and {3.12) we find:

sin t'

f J’&ﬁ . dt* = 0 (3.48)

1-2{2cos*t

£,
(C! +1){J1-Kcosir'd1’ +(a -1) J—l—.—xa =

cos® 4t
(3.k9)
e & sin 1
f 35_18.3_”:_____ dt! =0 (3.50)
l: 1t 1 -20, cos <!
@ +1)f\f1-xcos§r at' & (1 - 1)fm;-
(3.51)
where
AL = -ng:: , Ay = %‘1‘: , T'=T 4+ %’1‘: , K= (_,.\.,@.'L_a .
: o + 1)

Note that the integrands of (3.48) and (3.50) are odd functions of t' ;

~ ¥*
therefore, these equations are satisfied for all values of 0(1 and TA‘

Thus it appears that the expressions for 52 and a3 as given by (3.43)

and (3’#&) are correct,

~ * ~
The remaining task is one of expressing ay and TA in terms of LY

Such a solution is readily obtained if we introduce the new independent

variable

v=3(t"+7). (3.52)

Thus, (3.49) and {3.51) can be rewritten as follows:
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~

2 L,
Jl - Kostn® v dv + (&1 - l)f
~

dv
J}. - .'{231112 v

@, +1 =0 (3.53)

~r
R ) e

Z, 1,
o nN
@, + 1)‘“1 - stn® vdv+ (1- &) gy =1,  (3.54)
i 1 2 .2

~ *“ V1 - K'sin™ v

£, i,
Note that the terms of the above expressions are elliptic integrals of
the first and second kinds and, therefore, can be evalusted directly

*

from their respective tables once ®. and TA are knowm,

1

~ %
To solve for al and TA in terms of ?‘Y the following iterative

¥*
procedure was employed: First, appropriate values were assigned to TA

and al was then adjusted until the two terms of (3.53) became equal in
magnitude, This procedure was then repeated for each T:. The results
are presented in Figure 3.4, Since (3.53) is identical to (3.54) if

the sign of the second term in the former is reversed, the solution

for TZ in terms of ?‘Y is direct, The results of this computation are
shown in Figure 3.5. By cross plotting between Figures 3.4 and 3.5 we
are able to evaluate 51 in terms of ‘}','Y.; these results are presgnted in
Figure 3.6.

It should be pointed out that the aforementioned procedurz for
computing 51 and T: cannot be employed when AI'.Y<< 1, This is due to the
fact that accurate interpolation from a table of elliptic integrals
becomes difficult when both K2—> 1 and Z,,Ez_—» /2 ( an elliptic integral
of the first kind is not defined for K2= 1 when the amplitude becomes

.x.
w/2). Therefore, in order to determine the behavior of both 8('1 and TA

when Y.Y<< 1, the integration of (3.53) and (3.5L) was carried out on a

<o ATV, ks Ve T
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Figure 3.6 Solution for 51 in Terms of T‘Y

digital computer using a sixth order Runge-Kutta procedure. The comp-
1 utational technique was again one of iteratively adjusting &1 for a
i 'given T: until (3.53) was satisfied; the corresponding value of Y‘Y
was then determined from (3.54). The results are presented in Figure

3.7. As could be expected an elliptic integral of the first kind,

- e

~ o~ *
evaluated on the interval [2., £,) when T, << 1, is very sensitive to

as Ke—» 1. In contrast an elliptic integral of the second

~

changes in Ctl
kind is relatively insensitive to changes in &1 for 0.99s &1< 1;

*
therefore, a good approximation for TA can be obtained from Equation

(3.54) which becomes

- iy
2 ~
ffl ~ cos” $77 d1 = %—LY (3:55)
)
when O, = 1. If one neglects terms of 0(1"3) in the powexr series

1

P representation of sin 3T’ then (3.55) can be rewritten as

» Ciaspr et s T ABSI TR YASO NSO YR YL WU g e
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1': = 2{”:;-— . (3.56)

To demrnstrate the accuracy of this approximation (3.56) is plotted

against the numerical solution in Figure 3.7.

. 0.9999
*

T 0.999
al

002 0'9993

Equation (3.56) 0.9990

0
- . . 0.9987
0 0.0t 0.02 .  0.03 0.0k %

Figure 3.7 Results of the Computer Solution for 31 and ’1‘:

3.6 A Sufficient Condition for Time-Optimal Control

. In the previous sections we derived a control law which satisfies
the necessary condition provided by the maximum principle. In additionm,
from a physical interpretation this control "appears" to be optimal. We
shall now strengthen our claim as to the optimality of the control
through the cbncept of the Hamilton-Jacobi equation.

First, we find that for each point (¥, 7) in R), x (o, ?A] the
Hamiltonian, Equation {3.1L), has a unique absolute minimum when 2*(1)
1s given by Equations (3.15) and (3.16). In addition, this control is a
continuous function of 7,t€[0, T:]. Thus, both the tr;jectory and the
cost functional corresponding to a given pair (P(0), ;A) are suffi-
ciently smooth to allow the Hamilton-Jacobi equation to be applied

globally.
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We note that for many problems the Hamilton-Jacobi equationm,
being a partial differential equation, is often difficult if not im-
possible t7 solve. In cases where a complete global solution camnot be
found it may still be possible to use this equation to check the

optimality of a control derived from the maximum principle along part-

- icular trajectories. This is the approach we must resort to since it is
not, in general, possible to write the steeriég law, Equations (3.29)
é . and (3.30), in terms of a continuous error signal. In the sequel we
show that solutions to the Hamilton-Jacobi equation can be found along
trajectories between certain pairs of those initial and final states
described by Equation (3.8). While this approach does not show that a
global sufficfency condition is satisfied it, nevertheless, serves to
strengthen our confidence that the control given by Equation (3.29)

and (3.30) is indeed optimal,

For our minimum time control problem the Haumilton-Jacobi equation

is
| s v 23~ 23
("‘"t"‘“xv) o + (W, +u,) a“'y"'wyu a-i:x"wxn BTY l.
(3.57)

: In cases where ux.(r) = 0 and uy.(T) = -1 for all t¢[O, Tk] (i.e., for
trajectories counecting the state points {0, 0, 0, 0) and (0, 0, O,

| -mT, m = 2,4,6,...)) the above equation becomes

~  dJ ~ 9J dJ ~ dJ '
- ~~ - T e - = 1. .
wyv awx‘:‘ (“’xv 1) s'gy' + ‘*’yt aT.x on aLY (3 58)

o At g WS ¢

A solution to (3.58) with boundary conditions J = O at Z&, = 3;, =‘£x

=TY=01s
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3-8, -1 (3.59)

This {s the exact expression we obtain by solving (3.7) for Z&,, 3;,,

'ix, and‘i:Y when ux,(t) = 0, uy,(r) = -1, and then solving the resulting

expressions for T in terms of the normalized state variables, i.e.,

*
J = T,, Moreover, we find that'gi = g*(t). Hence, (3.45) and (3.46)
satisfy both the necessary and sufficient conditions for optimality
wmﬁlsm' '

This result agrees with the solution one would obtain from a

Qirect inspection of the control problem for those boundary conditions
described previously. That is, the entire control moment is applied as
go-linear as pogsible with the desired angular momentum change izfif§~
Moredover, the characteristics of the steering functions, as observed

up to this point,coincide with those predicted by a heuristic approach
to the control problem; therefore, in the absence of a rigorous proof

we will consider the control given by (3.45) and (3.46) to be optimal.

3.7 Summary of the Controller Characteristics

It is convenient to consider the characteristics of the time-

S

optimal control in terms of'{Y. Thus the results may be logically
separated into three sections. The first corresponds to values of"i:Y

3 less than 2T where control is effected over a "short period of time"

or in terms of T less than one revolution of the vehicle about the

oy e WA s

4
spin axis when Iz/I = 1., The second group corresponds to values of LY

r~ LX, 4

greater than 27. In this range the local maximum of oy decreases as LY

PR

becomes large. Fof‘iy greater than approximately 165 the optimal

control i{s nearly a steadily applied moment. The third group is

— et ——————————CH ¢ g T 6
s
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comprised of discrete values of Iy. When Y‘i =nmy, m = 2,4.6,..., ?1'1 is
identically zero; therefore, the optimal control is a constant moment
about the y' axis. -

3.7.1 Optimal Control When 7.,!5 27

Control in this region is bounded by two different modes of
operation: a counstant moment about the y' axis when E§,¢=2ﬂ3 and the
"race~-brake" type of control as‘{yw»o. The laéter is obviously a limit-
ing case if one considers either the geometric interpretation of the
control or the position of the gimballed thruster with respect to T as
T*»O. |
A

First, let us summarize the characteristics of the optimal steer-
ing functions when‘{Y<< 1. In the previous analysis we found that the
arc defined by the point p in Figure 3.2 is symmetric with respect to
the ¥é axis and has length al?:' From Figure 3.4 we find that ai-+1 as
tyﬂ'O; therefore, u;,(r)/u:,(r)a»o as the are defined by (3.31) de-
creases in length and is shifted toward the origin. Hence, in the limit
the control operates in a "race-brake" mode.

Additional insight as to the behavar of the optimal control
when‘zY<< 1 can be gained Lf we consider the posiﬁion of the control
jet with respect to 7. Define the angle between tle thruster and the x'

axis by & as shown in Figure 3.8. Expressing ¢t in terms of the control

components we find

tE=7- & g, = ¢(0), (3.60)
L J []
tetant Y0 s s i (3.61)
“Kl(T)
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Figure 3.8 Definition of Thruster Position
From Equations (3.45) and (3.46) plots of ¢ vs T for specific values of

*
TA can be constructed. The results of such computation for typical

*
values of '1'A arc presented in Figure 3.9.

oG AE 3 ST e

Fisure 3.9 Plots of Thruster Position vs 7

. When curves similiar to those in Figure 3.9 are plotted for yet
smaller values .7 1‘: (T:<-$/u') it becomes apparent that go» 3o when
T'y“’o (see Figur: 3,10) and the control approaches the "race-brake"
mode of operati:.:, This characteristic of the control law is f1lus-*
trated by trajc::zsries plotted in the (Y‘x"f'y) plane (sce Figures 3.11

and 3.12). Fror :=ese plots we note that the ratio of 'i’.x to i‘f
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~
decreases as I‘Y iz reduced and therefore there 1s less out of plane

motion due to precession of the spin axis.

0 T ~ 2T
LY

Figure 3.10 Initial Thruster Position vs 7‘!

3.7.2 Optimal Control When 'i'.v> or

LRIW

In this case the local maximum of 31 decreases as Y‘Y increases,
and the control approaches a steadily applied moment about the y' axis.

The closed form solution for '&1 and T:, as given by (3.39) and
(3.42), is represented by the dashed curves in Figures 3.5 and 3.6

(note that these relations were obtained under the assumption that

~ %* *
3 a, = O(I/TA), T, >> 1). Moreover, we also note that the terms of

*

O(IITA) which were neglected in Equation (3.35) are identically zero
~

when L, =of, u = 2,4,6,...; consequently, (3.39) is a good represen-~

~ ~
tation of ¢, when LY = M.

1
As illustrated by Figure 3.6 the solution to (3.5\) approaches

I 1 BT st TR

the predicted linear relation as “f‘Y {ncreases. An empirical approx-

imation to the exact solution is given by

- o 2|sin 1 2 o
: 'I‘A—.l_.Y 4 _lg_)_a;l . (3.6.)
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Por large values of Y'Y the control approaches a steadily applied
woment ; cc.msequently, we .expect trajectories in the (mx,-&'y,) plene to
be n.early circular in shape. This situation is fllustrated by Figure
3.18.

3.7.3 Optimal Control W‘heu‘i:Y =oT, m = 2,4,6,...

Por these ordered values of T’Y the optimal controi is a constant
wnt about the y' axis (u:.(‘r) = 0, u;._('r) =.-1) and is, therefore, -
nearly aligned during the entire interval {0, T:] with the desired
an'g\'shr momentum change ﬂf The response of the system when this
type of control is applied is illustrated by Figures 3.13, 3.15, and

. 3.17 where trajectories in the (ﬁx,-ﬁy,) plane are circles defined by

@) - D2+ () =1 (3.63)
When 51-‘ 0 the terminal time in seconds is given by
* nT
t, 2 —
£ o

: where p i{s the nutation frequency.
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CHAPTER &4

TIME-OPTIMAL STEERING WHEN CONTROL IS PROVIDED BY
BODY-FIXED REACTION JETS

The problem considercd in this chapter {s one of synthesizing
minimum time gontrols for the jet configurations depicted in Figure 1.1,
Cases (B) through (D). The maximum principle is used to provide a
necessary condition for time-optimality. A solution to the resulting
two point boundary value problem is obtained through an analytic tech-
nique when the final time is small compareﬁ to the spin rate or, in
the general case, by an iterative procedure which xequires the use of a
digital computer. Since the steering functions obtained in this manner
‘are not exéressed in terms of a continuous error signal they would not,
in general, be used to generate optimal controls in feedback systems.
However, true, time-optimal control laws have been determined for a

wide range of vehicle configurations and reorientation angles; the

steering functions are presented graphically in terms of a set of di-

mensionless parameters - as in the previous chapter,

" Therefore, the results should be useful in the design of active

control systems.

4.1 Equations of Motion

In this section the dynamical equations for a spinning vehicle
are developed when control is provided by Jet Configurations (s)

through (D). In the discussions which follow, except where noted, the

NI e T TR R T IR O SRR DI
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three controller configurations are considered simultaneously since

Controllers (C) and (D) are special cases of (B).

S

Assume that one pair of jets delivers a thrust ?;(t) and the

second pair f;(t) as shown in Figure 4.1,

Figure 4.1, Schematic of the Body-Fixed Control Jets

Thus, the control moments which appear in equation (2.27) can be ex-

pressed as
M (t) =a-f (t) (4.1)
My(t) =a- ?y(t) (4.2)

. where (a) is the moment arm. If the thrust of each jet is bounded by F

then ,f;(t)]s F and ,f;(t),s F. Define the new control variables

ux(t) and uy(t) by

N

£ (¢)
u () = (h-§)

- SO o




2 b O L L o BRSSP AR TS e S SRS, W > AT

62_

thus qu(t)ls} and '“y(t)l53° We can now write the control as follows:

ux(c) =M ux(t) . {4.5)
RALELE uy(c) (k.6) -

where M = a * F, After substituting (4.5) and (4.6) into (2.27) we

find that the controlled equation becomes:

. - - pan - g -y

7ax(,)' 0 y 00 Gx(g) 1 o
4 ay(a) 7 090 ':'y(o') . 0 1 u (o)
Ao ifo)| [0 0 0 off Llo)| f[ecoslo+p)) -sin(g+p ) v (o)
F-Y(o) 0000 (o) L_n‘m(cﬁ'ﬁ‘,) cos(g+8,)
_ (k.7)
vhere the dimensionless angular velocities and momentum components are:
' Iww (t) v w (t) (¢) L (t)
o) = 0 (o) - L () = T ()t
and

[} :wsto

From a computational standpoint it is very convenient to describe the

system dynamics in the above form, However, if we are interested in

.
S Sa e s

o 'the instantaneous position of the spin'axis then a representation

similar to Equations (2.18) and (2.19) nust be employed. For the pres-

gLl

; ent case we can define the spin axis position in terms of rotations

o

about the x' and y' axis as follows:
£ (o) = 2 f [8 (V)staly +8,) +3 (v)cos(y +p )1y (4.8)
1

\Ztay(V)Sin(V'+Bo)- ax(v)COS(V'fﬁo)]dv (4.9)

o s g
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When control is provided by four jets, Case (B}, the vector Ea(u)

has two components; therefore, the space cf admissible controls g is

a square in Rz, The dynamical systems corresponding to Cases (C) and
(D) can be obtained from (4.7) by setting ux(g) = 0 for all gel0, T
and restricting the remaining component in the following manner: (1)

for Case (C) Uy(q) el-1, 1], and (2) for Case (D) uy(a) efo, 1].

The boundary conditions considered in conjunction with {4.7) are

as follows:

i.'»x(o) = &'»: , Gx('r)= )

[ e) -
wy(o) w}' ’ wy('r) =0
(4.10)
- -0 =0 Izwfeo sin % = -
L (0) = &/ cos By~ Uy sin B, + u 5 L(T) = 0
Izwfeo CO8 95 = T, °I wzgf

= -0 -0
LY(O)zwx sin B, + w cos By -

‘In cases where G: = ﬁ; = O the origin is considered to be the initial

state of the system (eo =0).

It should be noted that 5: and G; need not be zero as was the
case in Chapter 3. 1ln general, optimal controls for Jet Configurations
(B) through (D) must be determined by numerical means; therefore, a
non-zero initial nutation rate presents no additional computational
difficulties. Also, it is of no apparent advantage to specify the
boundary conditions in regulator form since the angular velocity and
momentum equations are not coupled; therefore, setting all the final
states equal to zero does not simplify the control problem.

- Solving (h.j) for Gx(T), Gy(T), zx(T), and EY(T) subject to-

(4.10) results in the following set of governing equations vhich must

PR
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be satisfied by the admissible steering functions ux(g) and uy(c):
T
[10,06) <ot 75 - u (o) st 7aldg + 5,00) = 0 (k.11)
&r .
[1880) atn 70 + u (o) cos yoldg 4B () =0 - (h2)

I[“x(a) cos (g + By)=u (o) sin (g+8,)ldg + Ly(0) =0 (b.13)

[“x(") sin (g+ 50) + uy(q) cos (.0+50)]da + iy(o) ="zY (b.1%)

L]

Thus the control (the pair (u(y),T) which satisfies (L.11) through

(4.14)) is & function of the dimensionless physical parameters 52, 5;,

7s By and t‘l when 6, = 0 or by a similiar set when g, = O. At this

point it should be noted that control laws which are expressed in terms
of thege parameters can be applied when ix(T) # 0 if coordinate System
11 is pre-rotated through the angle éo (see Equation (3.13)). However,

unlike the case considered in the previous chapter where the control

"jJet could be oriented arbitrarily in the (x-y) plane, we must account

for the change in ﬁo as coordinate system II is rotated about the zR

" axis. Also, note that if G: = G; = O then the control which satisfies

(4.11) through (4.14) can be applied when the boundary conditions are

. Lo, .
specified in regulator form LY(O) = -sz}31 . LY(T) =0,

L.2 Some Symmetry Properties of the Control

In many of the cases which are investigated in subsequent sec~
tions it is assumed that 5: = 5; = 0. Under such conditions we can
show that the controls which satisfy (4.11) through (4.1%), whether
they are admissible or not, have certain symmetry properties when ref-

erenced to the despun coordinate system.

To demonstrate this symmetry let us first consider the casc when
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control is provided by 3et Configuratibn (B). If the pair (u(g), T)
satisfies (4.11) through (4.14) when 0 < Eo < 1/2 then the steering
functions '.nx(q) and uy(g) and the final time T corresponding to

xj2<B < 2r) can be determined as follows:
l. Forn/f2<p, <x

u (o) = 6.(o) u o) = i (o) , T= T (vas)
2. For x < B <3nf2

0 () = E e, ule) = Ble) , 1= 1 (4.16)
3. Por 3x/2< B < 2n

1 (o) = <) , u o) = G (o) , 7= ¥ (h.17)

To show that the above controls satisfy the requirement that

E)x(o) = ay(o) = &'sx('r) = &y('r) = 0 we substitute (4.15) through (4.17),

in sequence, into (¥.11) and (4.12); the resulting equations have the

same form as (4.11) and (4.12). Substituting the following expressions

Bo=Bo+§’Bo=§o+”’Bo=§o+22E (h.18)
in addition to (4.15) through {4.17), in sequence, into (4.,13) and
(4.14) we find that the resulting pair of equations is identical to
(4.13) and (4.14) in each case. Thus, control lavs corresponding to
n/2 < Bo < 21 can be readily determined from those corresponding to
0< Eo < x/2 when y and 'I'.y remain constant.

Performing a similar analysis in tf\e case when control is pro-
vided by two jets we can readily show that if (Ey(a), T) satisfies the
governing equations for 0 ¢ Eo <n then the control law for n < Bo < 2x

is given by
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uyle) = - ifo) , =¥ (4.19)

foz ab = Eo + n. When control is provided by a single thruster only a
positive (negative) control torque is available; therefore, we must
“solve equations (4.11) through (4.14) for the pair (“y(o). T) for each
set of values of the physical parameters y, g and fY (in terms of By
there is no simple relation between the control laws as was found in

the previous cases).

4.3 A Necessary and Sufficient Condition for Optimality

In Section 2.2 we showed that Control Systems (B) through (D) are
normal. Hence, the maximum principle provides both a necessary and

sufficient condition for cptimality. Forming the Hamiltonian

B = BalodlyB (o) + u,(0)] + Ra(o)lyw, (o) + u(a)] + Ps(o)lu, (o)
cos(g+8,) ~u (o)sin(g+p )] + Pa(o)lu (g)sin(+p,) (4.20)

1} + u (o)eonls +8.)].

Maximization §f the u;miltonian subject to the constraints given by

4 Equations (4.3) and (4.4) occurs when .

5 o ut(o) = génlsx(o)]: Controller (B) ] (4 .21)
| % L 0: Controllers (C) and (D)]
o % SGN[S (5)1: Controllers (B) and (Ci
i y ,
{ ut(s) = (b.22)
: y Lu'[sy(a)]: Controller (D)
. where
§
o 1, s (g) >0
wis(o)i=| " V" ]
0, Sy(d) S O_|
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Sx(a) = Pig) + Ps(o)col(a"’ﬁc) + Pelg)sin (o *Bo) {4 .23)

Sy(o') = Pa(o) - Pa(a)ﬂin(c"ﬁo) + Pg{g)cos (c"'ﬁo)- (4.24)

The adjoint variables, Pl(g) through Pu(g), which satisfy the canonical

equations

dp, M &P ar_! gP . QH dR, -3
w "L’ 4o

?
dg 3G * dg

' dg

.can be written in vector form as follows

.Pa.(o)
Pa(o)

Palo)

1

Pelo) ]

cos yg 3in 45 O

~s8in 4o cos yo O
0 o] 1
0 0 0

0
0
0

1

(4.25)

o b= -

where p‘{ through P2 are constants of integration. In view of (4.25)

the switching functions become:

sx(o') = 0oy sin (yg + p) + 0 sin (g+0) (k.26)

Sy(a) =0y cos (yg + ap) + 0y cos (g+Qa) (k.27)

Since the steering functions are bang-bang the optimal control is

independent of P(g) ;

adjoint vector are essential.

without loss of genetality.1

therefore, only three components of the initial

Thus, we can set either oy = 1l or g = 1

Upon substitution of the optimal steering functions (4.21) and

(4.22) into (4.11) through (4.14) we find that the only terms not fixed

by the system description are  and T*., Hence,

can be written in vector form as

1
The normalization procedure,

as the unit element,

x(1#) = x(0) + E(a, ).

is discussed in Appendix A,

the governing equations

(4.28)

that is, the choice of an appropriate ¢

"

» Foae
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Equetion (L4.28) represents a mapping between the pair (o, T*) and l(T*)
for a given.&(o). Thus, tﬁe problem of determining a minimum time con-
trol 1s equivalent to that of finding ar inverse to (L.28).
The remainder of this chapter is devoted to the problem of syn-
thesizing exact optimal controls for specified ranges of values of the

physical paramecerstn:, W, 7, 60 and iy. First, the characteristics

y
of the optimal controls are investigated when.T*<< 1. To include a
more general class of boundary conditions and system parameters we then .
discuss the development and application of a numeric;l procedure for
solving a number of two point boundary value problems.

4.4 Optimal Steering When the Dimensionless Final Time is Small
Compared to Unity

In this section we consider the optiwal control problem when
T*<K1. As in the previéus chapter, control of both the vehicle's
.attitude and transverse components of angular velocity over the inter-
val {o, T*] when T*<<_1 is referred to as the "short-time" control

problem. The motivation for studying the characteristics of the opt-

1aal control law when the final time is small has been discussed in

Chapter 1.
h.h.1 The Case When Controi is Provided by Four Jets

For oe[o, T ], T,<< 1, Equations (4. 11) through (4.1k4) become:
f (o, (0) {1 = 22} - u () (70)] do + o(Ty) = (1.29)
f[u (@) (r0) + u (o)1 - L)1 do + o(n) = 0 (1.30)

j}u (o)<k, (1 -u-) - K %} -u (U) k(1 - 5-) + K 0p] do+ o(Tg) =
) (4.31)
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ﬁix(a){i(l" K, (1 - ff;—)}+ uy(a){xl (1 -ﬂgl) - kyopldo to(T)=-L,  (4.32)

. °
0 _ =0
. when W, = Qy = 0 and K, =cos B, K, = sin Bo* The mathematical prob-

lem is now one of determining an optimal control in terms of the dimene
sionless parameters v, B, ard t; such that (4.29) through (L.32) are
satisfied. From the necessary condition provided by the maximum prin-

ciple we found that the optimal steering functions are bang-bang. Con-

e AR TA R B

sequently, it is possible to completely describe the optimal control in
terms of the switching times, the initial value of the steering func-

tions, and the final time. If the control is given in this form then ;

it is unnecessary to compute the initial adjoint ¢ as is usually done;

to add completeness we show in Appendix C that there exists a corres-

PSR PN, }

ponding . Instead, a method is presented whereby the number of times
each component of g#(g) changes sign can be determined from the switch-
.ing functions. Once the optimal switching sequence has been estab-

lished, the actual switch times, the initial value of the control, and

the time at which control is terminated are determined from a simul-
taneous solution to Equations (4.29) through (L4.32).

The first step in this procedure is to establish upper limits on
the number of times “ﬁ(o) and u;(g) change sign in the interval (O,Té).
Since the steering functions are uniquely defined by Sx(o) and Sy(g) we
can determine the maximum number of switchings in ,(O,Té), T; < T'B, by
examining the roots of the following equations:

sx(O'i): al sin (70’i+ a&) + sin (Ui +a“3) =Q (hOBB)

where i=1, %, Syeeeesh qje(O, Té)
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sy(c,j)-_-.oc1 cos (761 + Q) + cos ("j 405) =0 (l;.‘éh)

vhera

j = 1, 2, 3:"‘*"‘ Gie(otré)

y ?
Por the above switching functions it is possible to show that (hx)max=3

and (hy)ux'5 when T < 4.}11'.2 Furthermore, by examining the roots of
{4.33) and (4.34) simultaneously, we find that the switching sequence
given ia Table L.l represent the maximum numbér of times both ui(a) and
u;(g) change in the interval (o, 1;); that is, the sum h +h isa
maxinmum.” Thus, from the maximum principle, we find that if u(g) is
optimal for ¢e[0,T;] then b + hy < 3 and, in addition, both uﬁ(g) and
u;(q) must operate at their extreme values. Control laws which require
the sum hx + hy to be. less than three can be eliminated as candidates
for optimal steering if we assume that the initial (f.inal) state does
not lie on a switching 'surface which contains time-optimal trajectories.
‘In view of this assumption the task of determining an optimal comtrol
which satisfies (4.29) through (4.32) becomes one of choosing an appro-

priate switching sequence from Table 4,1 and then solving for the exact

switch times, u*(0), and the final time.

CASE hx hy
wm‘:am:::::‘
1-a 3 0
1-b 0 3
2-a 1 - 2
2-b 2 1

Table 4.1, Maximum Number of Switchings when T, < ’1‘1'3

QConsult Appendix C for a detailed discussion of this topic.

S¥or example, if hy = 3 then u(y) will not be optimal if hy >1.

)
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Let us first consider Cases (1-a) -and {1-b). If the steering
functions which appear in Equations {4.29) through (4.32) operate in a
bang-bang n ‘e and switch according to {1-a) or (1-t) then we find, by
comparing terms which appear on the left sides of the resulting equa-
tions on an order of magnitude basis, that both u;(g) and u;(g)'must

at least one switch point in the interval (0,T'). Therefore, cases

5
(1-a) and (1-b) can be elminated as candidates since this type of
switching camiot satisfy the boundary conditions specified by (4.10).
At this point the problem becomes one of determining whether Switching
Sequence (2-a) or (2-b) is to be applied in a particular situation. To
complete the task we must then compute the exact switch times, the

final time, and the initial value of the steering functions.

Let us proceed according to the following schedule: First, bang-

‘bang control which switches according to the logic given by Cases (2~a)

and (2-b) is substituted into (3.29) through (3.32); the resulting sets
of equations are then solved simultaneously for the three switch times

and the final time. From these results we can then determine g?(o)

. and, in addition, specify on the basis of the system description the

correct switching sequence,
Bang-bang control which is governed by Switching Logic (2-a) can

be represented geometrically as shown in Figure 4,2.
ux(o) “Y(U)

= + 5 +
T T
1 % B 1 y %2 B

Fijure 4.2. A Geometric Reprcsentation of Switching Sequence (7-a)
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Upon substitution of this control into Equations (4.29) through

*(h>a}2) and after straightforward mathematical manipulation we find:

- Ty 47203 13- 3 (1) - 6%l(e))? - ()2 +5§1 =0 (1.35)
: ’F o o y p AV g
7[1(&)2-'2-] +u [20,_ 202""1' J-u 2["(02)3 "'(aa) +71=0 (4.36)
. 51[2020131 - ["( )3 '133'] - K [ol)a - ,_él},}
D e i ol 1 1%

xgi%l20] - 26] + T3] + ku°(5(e])® - D) + 21 (4.37)

12
s - (e s B

5

-12
xy[(a3) 2~ 1 +x5l20y - Tl - ["'(01)3 -1 + x,u%(24] - 2q; + T,

,_ =
o l5o]) -§<a§>a+-§1 + 1 0%o])2= ()2 + 3] = - ;3'3, (4.38)
u_(0)

. . .
when terms of O(T;) are neglected and u® = ;f(—o-y.

The switching times can be written as combinations of linear and

higher' order i:erms as follows:

o = CT + € (4.39)
A =G+ &, - {k.bo)

Substituting the above expressions into (4.35) through (4.37) and
solving the resulting equations simultaneously for the required para-
meters gives:

. tan g, tana
¢,z z,C =g (1- ),C'y;(i-




b e

P P L TP

that sy(o) > 0 and therefore uy(O) =1,

3

71§ tan B
£ = ———p— + 0(13)

12
€2 = [% - 1o - hllﬂ' tan 8, ~u® tan® 50"2'5& ““sﬂ,o]-g' +°(1§)

I o_ +1 - u® 2 1 3 %

€5 =l (-5 +1)u hﬁ— tan g - u" tan 3o+24r tan® g ] + O(Tg)
With the switching times known it is now possible to solve {4.38) for
the dimensionless final time .

/-i‘, cos B
=2 W (k.42)

Note that terms of O(‘lg) have been neglected in this solution. Also

note that the switching times and the final time are functions of 9_(0)
as well as of the physics! parameters y, § and {Y To determine u(0)
we must refer to both Equation (4.42) and the necessary condition for

time optimality. First, ux(o) is chosen such that the radicand in

(4.42) is positive. Since (y-1) < 0 for -1 <y <1 and if 0 < B, < n/2

then ux(o) = 1 when t‘l >0 and ux(o) = «1vwhen fY < 0. Unfortunately,

uy(O) cannot be determined in a similar manner since it only appears

in terms of 0('1%) in Equation (4.38). However, when both the switching
sequence and the initial value of one component of g_(o) are known then

the initial value of the second component is given by the necessary

condition for time optimality. Thus, when > 0 and = 0 we find
Bo

To determine those values of the physical parameters for which
the optimal steering functions are given qualitatively by Switching,
Sequence (2-a),ux('0) =1, uy(O) = 1, we must investigate the behavior

of the switching points as changes are made in fo.starting at g = 9.
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Note that B, is the only physical parameter which appears im the first
order terms of (4.40) and (4.41) and, therefore, represents the strong-

est influence on the location of the switching points within tie intec-

'.val {o, ‘I’). 1f u° is positive then .,,’. and o'; are shifted toward zero

when B is montone increasing and 0 < B < x/b. It is readily shown
that £2 is negetive when 0 < By < x/l; concequ.eutly, the switch point
q{ is lost from the left end of the interval (O, r’) when g reaches a’
value vhich is slightly less than x/k. The exact value of B, at which
this occurs depends, of course, on both the system description and the
reorientation angle and is denoted by 8L (see Figure 4.3). Thus when
p° 2 p"’ the optimal steering functions are no longer described quali-
tatively by Switching Sequence (2-2). To determine an explicit rela-

tion between a"’ and the physical parameters we must consider both

Switching Sequence (2-a) and (2-b).

Figure 4.3, Definition of By
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When the switching logic is given by case (2-b) the optimal con-

trol can be represented geometrically as shown in Figure L.k,

u (e) uy(o’)
1 1
0 X 1 0 - e &
. y
% T T ! Ty
- 1 o -1 o L———-————.

Figure 4.k, A Geometi'ic Representation of Switching Sequence (2-b)

Substituting this control into Equations (4.29) through (L.32) and

after straightforward mathematical manipulation we find:
208 - 25 + T =7 1HG})3- HaB)2+ 3 31 - nll()2- S 151 = 0 (b.b3)

PloD)2- (52 5 121 4 l2gd-11- AN - gl =0 (hbb)
nlfea:" ao: +Tyl- R;[%(a:)s' %‘o':)a *é‘ 1‘;] - na[(a:)a'(a:)a*' ‘;' T%]
-k u%l2g] - Tg] 4 00lHo])3- § Bl w25 Bl =0 (bds)

A L I N CaR £

+kl2gf- 255 + Tyr HaPP+ HD) - F 3 4e® ()2 12 ku—(t%ﬁu.ha)

2 X
when terms of O(T;) are neglected.
Following the procedure outlined in the previous paragraph we
write the switching times as combinations of linear and higher order

terms:

X t '
0, = Cl TB + 81 (4.47)

i
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g =CbTy+& (4.48)
o) «GT+E (4.k9)

In this case:

ci-%(l-uo cot ao) : c&-ré-(j-uo cot 50) : ané-

. T2
& =[(1- %)uo +IZE-1- cot B+ u® °°t2ﬁ° - ZE-!'- ¢°tsf3°]‘§ + 0('1%)

A )
_ % Er=[(1 +%)u°+ hﬁi cot B+ u® cotaso - 731-'1- cocssol-g- + 0(1:)
1 yT2 cot B
Solving Equatfon (4.46) for the dimensionless final time when terms of
: 'Gi 0(13) are neglected gives

(4.50)

s

cas

The initial value of the steering functions are determined through a
procedure similar to that employed in Case {2-a)., First, the radicand

in (4.50) will be positive when 0 < By < ™ I."I >0, if uy(O) = -1,

R T .

- Second, from the necessary condition for optimality we find that when

) the switching sequence is given by (2-b) and Sy(O) < 0 then sx(o) >0

therefore ux(o) =1,

By observing the behavior of the switching times as changes are
pade in Bys B:) <B, < n/2, we can determine those values of the physical
parameters for which the optimal steering is specified qualitatively by
Switching Sequence (2-b), If u® s negative then gf and 0': are shifted
toward the right end of the interval (O’TB) when Bo is monotonc de-

creasing and By < Bo < n/2. As By = B, we find that Ug -» '1"§ and at the
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critical valu;, Bo - 5; ’ q: = ‘t:. When this situation occurs there
are only two switching points in the imterval (O,l") and therefore
Switching Sequence (2-b) no longer represents optimal steering since we
have sssumed that (hxﬂn’) = 3. Thus, the problem of determining B, 1is
equivalent to that of computing a value of Bo for which a{ =0 and

c: - t:. Using Equations (L.40) and (k.48) it is readily shown that

o - ME- . (.51)

.

In summary, we find that the optimal control which satisfies

Equations (4.29) through (4.32) has the following characteristics:

1. When 0 < g < B. the optimsl switching logic is given by (2-2).
Hence, ﬂ:(q) operates in & '"race-brake" mode with the switch time
located at nearly 1‘;/2. The second steering function, u;(g),
switches twice in the interval (O,T;), and the switching points are
shifted toward z'eto when 50 is monotone increasing, 0 < Bo < ﬁ:,-

2. When 5; < B, < x/2 the optimal switching logic is given by (2-b).
Here, u;(g) operates in a race-brake mode. The remaining steering
function, l&:(q), switches twice in the interval (O,T;), and the
switching times are shifted toward zero whenm By is monotone in-
creasing, B, < B, < z/2.

3. The optimal control corresponding to 5°e(n/2,2n) can be readily
determined from the syumetry properties of the reachable set as

outlined by Equations (4.15) through (4.17).

4.4.2 The Case When Control is Provided by Two Jets

The controller configuration considered in this secction is de-
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picted in Figure 1.,1.C. Since the two-jet ‘ontroller is a special case

of the four-jet configuration the optimal steering function is given by

BTG, T RN R TR

Equation (%.22). Our cbjective is to obtain an explicit expression for

% the optimal control in terms of the physical parsreters such that
;; Equations {L.11) through (4.14) are satisfied when ux(q) =0 and
%l

! !b <4 1;

.

Following both the assumptions made and the method of analysis

RSN

employed in Scction 4.h.1 we find that (hy)max:(hy)minaL There fore,

the mathematical problem becomes one of solving for the switching times

o{, "Z’ o'g; the initial value of the steering function u;(o); and the

~

dimensionless final time T_..

L
;f“ c
j When T, < 1 Equations (4.11) through (4.14) become:
S T T
’ of ucy(a)[ra - f—gi +0(o°)Jag = 0 (4.52)
| - ffym [1 - %L + 0(6*))dg = 0 (k.5)
| g 2 = 4)1y4
‘_ J u (o) malo = &) + & (1-5) + o(e*) ) = 0 (k.5)

E()[ (1-9) 4 ¢ (-8 +0())dg = T,  (4.55)
ofuyc rall = %5 neo'q‘g+ ¢ )1do = -Ly 55

for B: =5; = 0 and k3 = cos 30 » K2 = 8in Bo* Note that in the above

equations cubic terms have been retained in the power series represen-
tation of both sin yg and sin g; it is readily shown that the left side

of (4.55) is identically zero if uy(g) satisfies (4.52) through (4.54)

B Dt . Sa e SR A A i N A A AL AR AR S

and providing the remainder terms of the previously mentioned power
series are of 0(¢®). Since this order of accuracy must be maintained

in order to enmsure that the left side of (%.95) is not ideaticnlly

zero, it is worthwhile to determine the order of magaitude of TC in

R A AR
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terms of 'i.'y before an attempt is made to solve (4.52) through (4.55)

for the switching times and the final time.
Consider the case when Ky = 1 and K, = 0. Combining equations

(4.53) and (4.55) we find

T
6[?:(-1-:;)62 + 0(0‘)]uy(a)da = 'f-y (k.56)
therefore *
£, <L o). (4.57)
Hawe?er, 1f x; =0 and 3, = 1 it follows that
ﬁcﬂ "o + 0(s")u (o)do = T (4.58)
] —%— o o ]lly o)do = Ly .5
hence
- 2-1
L < o(Th). (4.59)

In view of (4.57) and (4.59) it is evident that the reorientation time

depends very strongly on the iritial position of the thrusters. That

is, the form of the functional relation between T: and tY

Bo' In contrast, when control is provided by four jets Bo only in-

depends upon

fluences the radicand in (4.42) and (4.50).

In view of the above discussion it does not appear worthwhile to
employ the method of solution described in the previous section to
determine the optimal control for the two-jet controller. However,
since the system is totally controllable there exists a pair (Q;Tz)
which satisfies (4.11) through (4.14), Ux(g) = 0, when T: << 1. Such

controls have been computed numerically and are described in Section

L.5.2.

ST e B R e - o R e RS e Bt 15 L < =



e

AR L)
~ N R e
" vw‘@‘» AR 7 P TR
e AR L SRR RN RN RO AL L A S A P
e ¢

11 S ST R

4.5 A Numerical Procedurs for Computing Time-Optimal Controls
In general, it is not possible to solve directly for the optimsl
control when steering is provided by Thruster Configurations (B)

through (D). Therefore, some type of numericel procedure must be used

to solve the two point boundary value problem. 1In this secticn zn
iterative technique for solving the two point boundary value problem is
discussed, and optimal controls are computed for two classes of bound-

ary conditions. As a result of this flooding we are sble to deduce

both the qualitative and quantitative structure of the optimal control.

4.5.1 A Systematic Variation of the Physical Parameters

The equations which must be satisfied by th~ optimal control can

be written in vector form as

X(1*)=x(0) + Ely, 5, @ ™). (4.60)

The control problem now becomes one of solving (4.60) for the pazir
(g_, '1‘*) or, equivalently, that of determining an inverse tc F. It is

impossible, in general, to evaluate this inverse analytically; there-

fore, an iterative procedure is suggested. Unfortunately, in the lat-

ter method the parameters X(T*), x(0), v, and 5, must be specified

prior to any numerical computetion. Therefore, if w2 are to synthesize

optimal control lavs for a wide range of vehicle configurations and re-
orientation angles, then the iterative procedure must be applied re-
peatedly as appropriate changes are made in the phiysical parameters:

In the folloving paragraphs 2 method is prerented whereby exact

time~-optimal contrcls based on the dimensionless physicr] poramotors

B N T St s pam crmR o v T
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5:, G;, t&, y and g are computed with a modest expenditure of computer

time. s Specifically, thic.method involves computing optimal trajector-

ies between selected sets of points in the normalized state space

X(i.e., flooding). Since the resulting control laws are specified in

terms of the physical parameters, the affect of changes in these dimen-

sionless quantities on the optimal control is readily observed. Thus
the necessity of condensing the system parameéérs into a reduced number
of dimen;ionlqss parameters becomes apparent. If this technique is not

‘used then: (1) the number of cases which must be considered increases

iignificantly, and in turn the computation time becomes excessive,and

(2) the global characteristics of the optimal conmtrol cannot be readily

determined.

To establish guidelines for a flooding process the following
questions concerning the design of an active control system are con-
sidered:

1. For a specific vehicle configuration (i.e., given geometry, spin
rate, and 'th'ruster configuration) what is the minimum control mo-
ment required to reorient the spacecraft through a specifieq angle
in a given amount of time? |

2. What i{s the affect of initial non-zero transverse components of an-
gular velocity on the minimum time required to control a spacecraft
to a given terminal attitude?

3, How do changes in the spacecraft's geometry, mass and spin rate iu-
fluence the minimum time for reorientation?

I, For a given rate of propellant expenditure how do the various con-

troller configurations compare with one another in terms of the

s 58
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minismum time required to reorient the spin axis through s given

angle?
By systematically perturbing the physical parameters as indicated
in the following ocutline and solving the resalting two point boundary

value problem at each step we are sble to provide answers to the above

questions and, in addition, illuminate the basic structure of the mini-
mum time comtrol problem:
; 1. For a given geometry iqd mass (i.e., y =constant) the character.

istics of the optimal control in terms of spin rate, reorientation

3
; angle, and control magnitude are a determined by varying tY when
i =0 _ =0 _ - '
¢ w, = wy 0 and B, ™ constant.
| S 2. The influence of the spacecraft's geometry and mass on the optimal

control is investigatec by systematically varying y in Item 1.
3. In Items 1 and 2 above it is assumed that fx(T)s 0. In Section
_ 4.1 we found the optimal control corresponding to boundary condi-
tions of the form given by (4.10) can be applfed when ix(T) 40 if
e Coordinate System II is prerotated through the angle Bo' There fore,
L the influence of both ix(T) % 0 and the initial orientation of the
| thruster(s) on the optimal control are @étermined by systematically
varying g for fixed values of 5;, G;, EY and .
4. The affect of 5: $0or 5; % 0 on the optimal control is determined
\ by systematically varying these quantities while holding f&, Bo and
y constant.
To implement the flooding procedure described above an algorithm
was déveloped for "solving the required number of two point boundary

value problems with a modest expenditure of computer time, Specifi-
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cally, a method similar to that proposed. by Knudsen [15] was employed
(see Appendix A). Knudsen's algorithm like those of Neustadt's [16],
{171, Eaton's [18], and Plant's [19] relies on the connection between
the system's adjoint equations and the time-optimal control. In order
to initiate the computational process a "guess'" is made for the pair
(g, T*). The iterative procedure is then used to systematically cor-
rect the control and the final time until Equ;tions (L.11) through
(4.14) are satisfied. In this procedure, 1ike those proposed by other
authors, the number of iterations required to converge on the optimal -
control depends upon how close the nominal control is to the optimal
coﬂtrol. The major advantage of a Newton type iterative procedure
(both Knudsen's and Plant's techniques make use of the basic Newton
recursive relation) is that it converges rapidly when this error is
small,
| An efficient aigorithm was designed around Knudsen's iterative
procedure by taking advantage of the fact that exact analytic solutions
to the two point boundary value problem have been found for certain
-0

values of the parameters 5:, o

error between the computed and actual control laws is small if small

. iY’ Bo and y. Thus, in general, the

variations are made in the physical parameters sterting from those
values for which the control law is known. For example, in Item 1,
page 82, small changes were made in tY’ (rY)i+1 = (fY) + A f&, starting
at f; ==(f;)1; in this case the control éorresponding to (£§)1 was
determined by analytic methods (see Section 4.5.2).

In certain situations physical parameters were chosen as starting

points in the flooding process for which thc control could not be
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determined by straightforf-lard analytic methods. Under such circum-
) stances a guess was made for the pair (ng*); the iterative procedure
was then used to compute the required cuntrol. Once a "starting'" con-
trol had been determined the flooding process was carried out as out-

lined previously,

4.5.2 Analytic Soiutions to the Control Probtem
In this section our primary objective is to provide exact time-
optimal controls which can be used as starting points for the flooaing

process when 5: = 5; = 0, For convenience we can rewrite the governing

equations which must be satisfied by the optimal control as follows:

!}u (g) cos yg - u (g) sin yqldg =0 . (4.61)
St

f}u (¢) sin.yg +u (c) cos ygldg = 0 (4.62)
ftu (o) con o+ 5,0~ 1, (o) st (g + ) - (4.63)

]I[ux(“) sin (g+5°)+ \ly(o‘) cos (o' +Bo)]dq = -fy (4.64)

o

_ In addition, if the contrcl is optimal then the stesring functions must

have the following form:
u¥(o) = SoN[lox sin (yg+0az) + sin (5 + 06)] (4.65)
d;(a) = S6N[ay cos (yg +op) + tos (g + Qa)] (4.66)

In Chapter 3 we found that the control which generates optimal traject-
ories between certain initial and final state points is a constant mo-
ment about y' axis; a similar situation occurs when control is provided

by Thruster Configurations (B) through (D). However, in the latter
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cases the control jets are rigidly attached to the spacecraft; hence,
the most efficient mode of operation occurs when the control mo&ents
are applied either in phase or x radiaus out of phase with the coef-
ficients of ux(q) and Uy(g) in (4.64). The optimal steering functions
(.65) and (4.66) will be of this form when oy = O and 0z = B +=. It

is readily shown that Equations (14.63) and (L.64) are satisfied if the

control is given by

*( ) = [sGN[-sin(g+p )]: Controller (B _

"¢ [ sitat B 0: Controllers (<):) and (n)] (k.67)
*() = [oN[-cos(g+p_)]: Controllers (B) and (C

e [u'[-:z:(g*'g:;%: cﬁﬁéﬁuiiim ) and { )] (4.68)
™= me, m=2, 4, 6, 8,000s. (4.69)

when the normalized angular momentum LY assumes those values in

Table L.2.

L-Jets 2-Jets 1-Jet
iy bm 2m m

Table 4.2. Maximum Values for iY when T* {a Given by Equation
(1.69)
However, it is evident that (4.61) and (4.62) are not satisfied for all
values of T as given by (4.69) when u* is defined by (4.67) and (4.68)
Therefore we must judiciously select.appropriate ;élues for m from
among those given by (4.69). This can be accomplished through a phys-
ical interpretation of the integrands which appear in (4 61) and (4e62),

First, the control moments change sign at a frequency which is directly

proportional to the spin rate., Second, the cocfficients of ux(g) and

w0 o Tt iR A% 0

P
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“y(o) oscillate at & frequency which is proportional to the difference
between the spin and nutation rates (i.e., yg = (I<-Iz/1)w‘t). It can
be’ readily shown that the integral over [0,mx] of the product of such

functions is zero when the spin and nutation rates are related by

w (1 - 33) 'Eﬁgﬁ (%.70)
s L 1

vhere my and my are integers. Thus one value of m for which Equations'

(4.61) through (L.64) are satisfied is given by
m=2m = gs-”- . (4.71)

Note that in deriving (4.70) and (4.71) we have assumed that y is a
rational number; for engineering purposes this is not restrictive since
there exists a rational number which is arbitrarily élose to any given
number in R;.

Let us now demonstrate the validity of Equation (4.71) when con-
trol is provided by Jet Configurations (B) and {C). Specifically, we
wish to show that each term in (4.61) and (4.62) is identically zero
when u:(g), u;(a) and T axe given by Equations (4.67), (4.68), and

" (4.69) respectively. Actually, we need only consider terms of the form
ul fscn[sin(q + Qa)]cos yg dg (4.72)

fscn[un(,, + a3))sin yg dg (4.73)

since the control which appears in the remaining terms changes sign at

the same frequency but is shifted by x/2 (it will be shown that

ﬁ; = 5; = 0 for all values of 05). Define a new indcpendent variable

o' by g =0 - %’ Thus (4.72) and (4.73) become
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5; = fSGN[_-l; sin (o' + 03)]cos yo' do' (b.74)
-31 47
c:); = SGN[j-_ sin (o' + aa)]sin yo' dg! (l&."(S)
. i
: -3T

wvhere T =2mm;.

P L)

. If a3 = O,x then 5; = 0 since the integrand of (4.74) is an odd func-

tion of ¢'. 1In general, integration of (’4.71,&). yields

; - 22
i w; = = £ (-1) sin ylog + (ml-j)n]. (4.76)
: R = |

After straightforward mathematical manipulation this equation becomes

) n 2m m
&'»;= %([ i:l(-l)j cos yix + z:l (-l)jcos yin)sin 03 -[;;1 (-1)sinygn
1

j=1 Jm *3
Eull j (hon)
+ £ (-1)? sin yjr cos 70:3]).
Jem1 41

1f m;y (mp) 1s an even integer and my (my) is odd then the first my

terms exactly cancel the second m; terms; a similar situatiom occurs in

the coefficient of cos yo3. However, when m; and my are both odd we

find:
my j 2my j
Z (-1)’ cos yir =0, 5 («1)7 cos yjn = 0
3=l J=mi+a

T (Wetnpin =0, 2 (1)) stnpgr= 0

=l J=mi+2
Hence, if T = 2;mmy = 2mmy/y then 5}'( = O irrespective of the value of
O3. By following a similar procedure we can readily show that @' = 0.
Therefore, Equations (4.61) through (4.6€4) are satisfied when 03 = O,

; oz= B, + =, T = 2mm, for those valucs f‘Y given in Table L.2 when
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contrel is provided by Jet Configurations (B) and (C).

If the system is controlled by a single jet then the above pro-
cedure for selecting a "starting" contrcl cannot be applfed directly.
This is due to the fact that the minimum time control has coast peri-
ods. If the final time is to be indeed 2 minimum then the control must
terminate with a thrust periocd; this fact must be considered when choos
ing the pair (g, T). Alsc, the final time ass.ociated with those values
of f‘Y given in Table 4.2 may no longer be independent of B, a3 is the
case when control is provided by Thruster Configurations (B) and ((‘.;).

When n/2 < Bo < 3x/2 the prim;ry criterion for choosing a control
is that of maximizing t‘l for a given ‘l:D Thus, u;(q) must operate
either in phase (T.Y(T) > 0) or x radians out of phase (iy('l’) < 0) with

cos (g + po). In order to satisfy the requirement that the control

terminates with a thrust period we can set T =2mmy. It is readily

D
shown that the pair (u;(q), ‘1';), which is now completely specified,

satisfies Equations (4.61) and (4.64) for those values of tY given by

Table 4.2. To complete the soluticn we must demonstrate that the trams-

_verse components of angular velocity are zero vhen g = ™. Substitut-

D
ing (4.68) and (4.69) into (4.61) and (4.62) gives:

2m,x

5;"‘ = [u'[-cos(q-i- Bo)]sin yo dg (4.78)
o 2my :

ﬁ§ - fu'[-cos(g + 50) cos yg dg (4.79)

o
In view of the definition of control set f the function uf ] is

+ 1 ;[-cos(g+p )] >0
u'[-cos(g +p_)]= ° .
° 0 ;[-cos(s +p,)] < O
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Thus, after straightforward mathematical manipulacion (4.78) becomes

- m my
W = [321(-1)5‘:08 7::(%--#3) + cos mpn jzl(-l)jm’cu 7x(-;-+j)]coa 7 8,

mny j 1 my 1
+ [ £(-1)'sin 71r(-2-+j) + cos mpz L (-1) sin 7x(§- + 3 sin y By

J=1 j=1
(4.80)
If m; (my) is an even integer and my (mx) is odd then:
m1 m
L (-l)jcos 7“(% + 1) = -cos mpx I-'-:"("1)‘“1“’1:03 7n(%+1)

[El j=1

m m
31(-1):‘ sin 7,((%-4-_1) = =08 Max 2‘.1( 1) g4, 71r(%+3)
j=l §=1

However, 1if both m and my are odd integers then:

m m .
Zl(-l)jcos 71r(-;-+ §) =0 81(-1)j+m1cos 71:(';'+j) =0
3= 3=

my m
pok (-l)jSin Yﬂ(% +j) =0 21(_1)3"‘!‘\131n 7ﬂ(;§‘4j) =0
j=1 =1

Therefore, G'Ji = 0 irrespective of the val.ue of Bo’ By a similar pro-
cedure we can show that 5? = O,

Now, let us consider the case when 3n/2 < ao < 5w/2. For values
of B, within this range the control will not terminate with a thrust
pericd if, as in the previous cases, the initial co-state is selected
8o as to maximize 'I',Y for a specified final time-namely T = 2mxmy. That
is, the choice for ¢ cannot be based on the assumption that \l;(q) must
operate directly in phase (iY < 0) or n radians out of phase (I.Y > E‘))
with cos(y + Bo)' ) However, as will be shown presently the proper choice

for the initial co-state is that @ which nearly maxinizes Ly for a

o RURERE LN W et




given T (f.e., 03 ~0, 0 ™ By * x).

First, let us consider possible choices for Ty 1If T, < 2mmy
then (L4.64) 1s not satisfied for those values of ﬂy given in Table 4.1.
Therefo;e Tb > 2mmy. When oy =0 and Q3 = so + x the control will

terminate with a thrust period if the normalized final time is defined

by
T,>2m +5-p ,0<p <5 (4.81)
T, >2m + & -p,E<p <2n (1.82)

1f T, is given by either (4.81) or (4.82) it is readily shown that
(4.63) is not satisfied; in addition, t‘l will be larger than the de-
st.ted value.

In previous work we showed that &x(l‘) = Gy(‘l') = 0 when 03 = 0

G =7x+p and T= 2mmy. Changing the normalized final time from this

value to
TD-2M1+-§-B°+e.O_<_BO£§ (4.83)
T =2m *%‘-- B, te 2:7< B, < 2n (4.84)

wvhere € << 1 introduces an additional coast perio¢ plus a thrust period
of duration e, Thus u.’x('r) and By(’l') will be very nearly zero. A de-

tailed examination of (4.64) shows that if T, is ¢ tven by (4.83) or

(4.84) and a3 2 x + Bo» then the actual value of t\! is less than the
desired value, In addition, (4.63) is not satisfied. Actually, the

difference between (iY)actual and (T‘Y)requited increases as 03 is made

less than or greater than so + n; in order to reduce this error TD must

ey
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be made larger than that specified by (4.83) or (4.84). Therefore,
) there can be but one conclusion - 03 # 0. In view of the previous dis-
' cussion the following appear to be reascnable starting values for the ]
iterative procedure: o) = 0(&5, g ™+ 5°, Ib given by Equation
(4.83) or (4.84). Note that the normalized final time is no longer

independent of g as was the case when #/2 < Qp < 3x/2.

4.6 Simulation Results for Control System B

The flooding procedure outlined in Section 4.5.1, which utilizes

the iterative method described in Appendix A, was programmed for a

Burroughs B5500 digital computer. Optimal controls were then computed

for a number of different vehicle configurations and boundary condi-
tions. The objective was to provide sufficient quantitative results to
allow a discussion of the characteristics of the optimal controls in
view of those questions posed in Section 4.5.1., In the present section,
as well as in those that follow, results of this numerical approach are
summarized and a numbér of comments concerning the structure of the
optimal controls are presented.

Optimal controls defined quantitatively by (g,T:), corteiponding
to boundary conditions defined by (3-10), are summarized in Figures
4.6 through 4.16. For discussion purposes, and in view of the goals
qutlincd in 4.5.1, it is convenient to separate these results into
three patts. First, from Figures 4.6 through 4.13 we can make certain
observations as to the characteristics of the optimal control in terms
of the vehicles shape and mass, its spin rate, the control magnitude,

and the maneuvering angle 8¢ when 5: = &° = 0. Second, to demonstrate

y
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the influence of Bo on 'l'; optimal controls have been computed in terms
of the pair (ao, .!'Y)' These solutions allow us to make certain con-
jectures as to the geometry of the minimum time isochrones when: (1)
y =C, and (2) 43:= 5;: 0. Finally, Figures 4.14 through 4.16 show

the influence of an initial non-zero transverse component of angular

velocity on the optimal control.

[N

4,6.1 Characteristics of the Optimal Control in Terms of the Vehicle's
Moments of Inertia and Normalized Angular Momentum

w .y . _=0_ =0
The pair (g, ’t;) is plotted in tems of (7, Ly) for & = &)= 0,
B, = 0, in Figures 4,6 through 4.13. From these solutions we find that
the optimal controls for Jet Configurations (A) and (B) have certain
distinguiching traits in common. First, the local maximum of ¢ de-

creases a8 fy increases; therefore, in the limit, when T'Y - o both

Il:(q) and !,l;(g) operate either directly in phase (EY < 0) or x radians

out of phase (f.‘ > 0) with sin (¢ + 50) and cos (g + 50) respectively

in (k.14). In this case the dimensionless final time is given by

LR ST (4.85)

Yor specific values of iy, as shown in Figures 4.6 and 4.10, &y
is identically zero; hence, the control operates c¢ither directly in
phase or x radians out of phase with sin (g + so) and cos (o + 50).
Such points represent the most efficient mode of operation since they
correspond to local minima of the dimensionless final time curves with
respect to the limiting linear relation given by (4.85). '

For small velues of ?‘Y (M > Izwief) the dimensionless final time

and switch times are given by {4.39) through (L1.50). Note that onc
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component of u*(s), depending upon the relation between B, and 3.,
operates in a "race-brake” mode. In this respect the control is quite
similar tc¢ that for the gimballed jeg. It is of interest to compare
the time required (in seconds) for the lh-jet controller to that for the

gimballed jet to reorient a given spacecraft through a specified angle

when ™" << 1 (T: << 1). From (3.56), (4.42), and (4.50) we find:

B
L6:8 \
(t:)A .2 ;ﬁ:; (Gimballed Jet) (4.86)
219fcos ﬁb ]
(ef)g=2/—F5—=,0%8,<8, (4.87)
sp

(koJets)

. 219f31n é;— ' .
(tedp= 2/t + % <% <% (4.88)

.

where ¥ is the maximum total rate of propellant flow to the control
jet(s). Thus, when a comparison is basad on a given w, and when both
iY and iY are "small" we find that the L-jet configuration requires at
most‘fe(t’f')A seconds to rcorient a spinning vehicle.

Consider nov the behavior of T§ in terms of the pair (7,'iY) for
values of tY excluded by the "short time" solutions. Figure 4.5 shows
that vhen 4 > 0 and tY < 10 increasing y(decreasing 12/1) alwvays re-
flects in an increase in T; for a given EY' Note the sizeable reduc-
tion in T;
Tg corresponding to similar reductions in 5 when y < 0.6, Also note
that for y = 0,01, 0.2, and 0.4 the dimesnsionless final time is nearly

when 7 is reduced from 0.8 to 0.6 compared to changes in

that given by (%.95) which is represented by the dasked linc.
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In contrast, whea y < 0 the minimum time curves, in general, lie
very close to the straight line defined by (4.85). A noteable devia~
tion occurs when i‘l < b4; however, the dispersion is not as great as
when y > 0. This behavior can be attributed to changes in the vehicle's
mass distribution as y increases from -0.8 to + 0.8. Such changes tend
to reduce the sensitivity of the system to coqtrol inputs. This fact
is clearly illustrated in Figures 4.17, 4.18, 4.21, and 4.22 where
optimal trajectories are plotted in terms of y for fixed values of tY
within the range of interest (i.e., f& < 10). Note that the motion of
the spin axis tends to assume the characteristics of that of a non-
§plnning body as y 1, That is, the ratio of ix(g) to iy(g) decreases
as y increases. This is due to the fact that the nutation rate is pro-

4

portional to Iz/I. In this respect the "short time" solution resem-
bles that for the single axis control of a non-spinning body. Thus a
decrease in the nutation rate coupled with an increase in the trans-
vergse moment of inertia results in an increase in Tg. However, as
indicated by the péogressively larger values of T; as y changes from
O.4 to 0.8 for a given EY, the dxmensionléss final time is not directly
proportional to y. This can be attributed to the rapid change in the
vehicle's mass distribution as y » 1. That is, for a given change in o

the transverse moment of inertia must increase according to the follow-

ing relation
Izaq
=7 =0v )(1-7)

AI:(I “-?9)

—

PR

hResults of the ''short time" analysis, Equations (v h2) nnd‘(u., Js
show that I is the only system paramcter which influenccs ).

[
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when Iz remains constant. In contrast, the geometry of a symmetrical
body approaches that of an infinitely thin disk as y -» -1.

Figvres L .10 through 4.13 show that when iY > 10 the minirum time
control is one which nearly maximizes the change in angulac momentum
I,w 6, over a given interval of time. That is, u;(g) and U;(g) operate
nearly x radians out of phase with sin (°-+eo) and cos (¢ +5°) re-
spectively. This behavior is also observed 1; the optimal control when
y > 0. However, comparing Figures L.5 and 4.10 we fiud that, in gen-

eral, 'Q&ly <0 <"a1'7 > 0 and, in addition, that al'7 damps out

<0
more rapidly than °‘1|7 > o+ Therefore, the minimum time curves shown
in Figure 4.13 approach the linear relation given by (4.87) for smaller
values of iv then when y > 0, Figure L,9. This is further illustrated
by Figures 4.22 through L .24 where optimal crajectories of the spin
axls are plotted for specific values of the parameters (7, fY). Note
that when o is "small" (t.e., ,ai!< 0.2) the optimal trajectories ave
characterized by a sequence of "half loops'; in view of the trajector-
ies shown in Figures 3.13, 3.15, and 3,17 this response is similar to
that of System (A) whgn the optimal steefing law is a steadily applied

moment about the y' axis.

4.6.2 Influence of Initial Thruster Position on the Optimal Control

In section 4.2 it was shown that the optimal control possesses

certain symmetry properties when 5: = 5; = 0, Specifically, it was

noted that if the control which satisfies (4.11) through (%.1h) is

known for 0 < 8 < x/2 then it is also known for x/2 < p < ?x. In

o

.

addition, when tho control is expressed in terms of both 90 and iY we
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9
are able to transform boundary conditions where LX(T) # 0 to the form
of (4.10) by a prerotation of Coordinate System II through the angle Eo.
Therefore, once controls have been computed in terms of the pair (go,ﬁyx
0< 50 < n/2, then it is possible to plot minimum time isochrones in
the (lx - "Y) plane,

Through successive applications of the iterative techniquec de-
scribed in Appendix A optimal controls corresp%nding to specific values
of the pair (g , fy) have been determined for y = -0.2 and y = 0.6,

Results of this numerical computation indicate that for engineering pur

poses 1‘; is independent of Bo when EY 2 1.0. Upon further investiga-
tlon of the problem it was noted that the value of f} at vhich By be-
gins to influence T; depends upon y. From the numerical results for
y = «0,2, 0.6 and in view of Figures 4.6 and 4.13 it appears reasonable
to make the following conjecture as to the relation between T: and the

B

pair (7, ﬁb)' In general, Tg remains sensitive to changes in Bo for

increasingly larger values of t‘i as y 1. Hence, the greater the

deviation between the actual value of T¥ and the limiting linear rela-

B
tion (Figures 4.6 and 4.13) the more sensitive T% becomes to changes in
Bc' Since the minimum time isochrones for y = -0.2, 0.6 when f& >1.0

are nearly circular, we find that the time required to reach a terminal
state point in the (ix - iY) planc is very close to that given by
Figures L.6 and 4.13; therefore, the numerical results for Bo # 0 are

g
not presented.”

SNote that the minimum timc isochrones for Controller (A) are circles
for all values of 'fy.




4.6.3. Influence of an Initial Noa-Zero Transverse Component of
Angulayr Velocity on the Optimal Control

In this section we consider the optimal control prcblem whea the
total angular momentum vector is not aligned with the spin axis at
o =0. As for the cases considered in previous sections, the iterative
procedure was employed to compute optimal trajectories between certain
pairs of initial and final state points which are of engineering inter-
es’. From theose quantitative results we are then able to conjecture as
to the general nature of the optimal control.

The initial ari final states considered are typified by those
shown in Figure 4.5. Hence, we consider situations where the change in
total angular momentum is zerc, Case 1; and where the angular momentum
addition Af‘_ results in the total angular momentum vector being aligned

with the spin axis at ¢ = T' Case 2,

ZR ZR
aL
i(O) = t(T ) =, %
i B L(o) / L(r)
( py ol e
\\___)_/ ! /
' Spin axis at (\\— o
ip:nTgxis_a_t '\'c -0 Spin axis at
l g = O%aud
] R o=
> Yo YR
X, Case 1 X Case 2

Figure 4.5, Typical Initinl and Final Spin Axis Positions when m; $0

. O
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Case 1

A quantitative description of the optimal control, which satis-

A ' fies boundary conditions of the form defined by Case 1, is presented in
: Pigures 4.1k and L.15. These results, though not as complete as in

é previous sections, are sufficient to give some indication as to the
characteristics of the optimal control in terﬂs of both the system
persmeters and the boundary conditions.

The esscntial features of optimal ;teering for two different
vehicle configurations, y = + 0.8, are shovn in Figure L.1k, Note that
in all cases when W(0) # O, P(y) has been normalized with respect toCn.
Thus ¢, determines the relative weighting betwcen the high and low fre-
quency terms in Equations (4.26) and (4.27).

At this point it is interesting to comparc the characteristics of
the optimal controls when W(0) # O and when w(0) = O, In the latter
case we found that when f& - » the higher frequency terms of the switch~
ing functions become dominant. In contrast, when 5; - o, ai,= 0, the
lower frequency terms dominate; therefore, the optimal control depends
only on the transverse component of angulgr velocity. That is, in the
limit, u:(q) = sgn[-wx(qﬂ and u;(c)=sgn[~wy(a)]. Hence the attitude
control problem can be described by a two dimensicnal plant involving
wx(q) and wy(g). Optimal controls for such a tvo 9imensional model arc
well knovm and have been found in terms of the system's state by Athans,
et al. [1]. If the admissible control set is a circle, as in Con-

troller Configuration (A), then in the limit optimal stcering is given

by: : 'w;(t) ' (t)

A o R R T O “e
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Let us now examine the characteristics of gf(a) in terms of y. Figure
4.14 shows that the rate at which oy dsmps out depends directly on the
vehicle's shape and mass. The reason for this behavior Secomes evident
if one considers the unforced motion of the system when 5°'£ 0. From

the theory we find that the rate at which w precesses about the Z_ axis

R
is directly proportional to Iz/I. Hence, when IzII is "large" and if

the controls switch sign at the nutation frequency then

. TB TB

.;.B [sptoda~o, %_,; [uy0taa~0 (4.91)
(o] (o]

which is required if q"I:.._as 0. However, if Iz/I is "small" and Ty is not
"large" then the average control will not be small and A i._ # 0. Thus

the higher frequency terms in (4.26) and (4.27) cannot be neglected.

Case 2

Under certain.conditions it may be desirable to drive the spin
axis to a position in the (YR - ZR) plane other than that defined by
6¢ = 0. To qualitativelv define the optimal control corresponding to
boundary conditions of this type the iterative procecure was enployed
to determine optimal controls for certain initial an? fin2)l states
typified by Case 2, Results for two different vehicle configurations
(y = + 0.8) are presented in Figure (4.16). Also, the dirensionless
final time Tg required for controlling spacecraft defined by y = 0.2,
«0.4, when the initial and final states are of the form given by Cases
1 and 2 is shown in Figure 4,15,

When the change in state is defined by Case 2 it is of interest

to note that the two terwms in Equations (%.25) and (:-."7) are weighed

predss & mg dese M s

AN

o e e ok RN A BN R AT O SISt SRR o Sl

S E‘ﬁé‘}ﬂ;

RO




v 4.

Yoy -

TR e pen s

100

nearly the same (i.e.,  ~ 1) for those values of ﬁ; shown in Figure
4,16 (this is undoubtedly true for values of ,5;[2 4o. Extending these
results allows one to at least qualitatively define the behavior of ¢
and 0 in terms of QKO) and f;.

Typical optimal trajectories in the (ix - iY) and (Gx- Gy) planes
are plotted for both Cases 1 and 2, y = 0.2, -0.4, in Figures 4,25
through 4.29, ,

4.7 Simulation Results for Control System C

In the previous section we discussed the salient characteristics
of the optimal control for the L-jet configuration in terms of the para-
maters 5;, 5:, ty, 7, and ﬁo' Noting that the two and four jet control
systems are similar (i.e., the jets are rigidly attached to and spin

with the vehicle; in addition, QB and (), are symmetrical with respect

c
‘to the u_ and/or u, axis) and in view of the numerical results pre-
sented in Figures L.5 through 4.13 and 4.30 through 4.33 it is evident
that the control laws have certain characterisitcs in common. There~
fore, in this section the influence of the governing parameters on the

" optimal control is not discussed in detail; instead, a comparison is
made of the "dogree of control' provided by the two control systems,
4.7.1 Characteristics of the Optimal Control in Terms of the

Vehicle's Moments of Inertia and Normalized Angular Mementum
A comparison of the dimensionless final time curves in Figures
4,9, 4.13, and 4,33 shows certain similarities (and differcunces) in the

performance of the 4 and 2-jet controllers. First, the rinimum time

required for spin axis rcorientation is nearly the sa.c when both (iY)B

X ot bkt A
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and (f&)c are large - independent of the value of y. Results of the

numerical solutions, as summarized in Figure 4.33, indicate that a good

approximation for the dimensionless final time Tz is given by

vhen £ 2 40. Hence, !
xI w6 ) %
* s s’°f !

(eg)e ~ Zed, (4.93)

and in the limit when x'.Y >

nl wo
* g8 f
(tf)c * aaél'P * (b.94)

For values of f; < 40 the performance capabilities of the two

systems begin to differ; moreover, the rclative loss in performance by
the 2-jet system becomes very evident when f} is small., In this region

T: is influenced to a greater degree by the vehicle's moments of iner-

! tia than 1is T:. Also, the characteristics of the "short time" solu-

tion differ remarkably when the number of control jets is reduced from
four to two.

Comparing Figures 4,9 and 4.33 we find that, in general, the per-
formance of the two systems are similar from y > C and (iY)B L2,

(L

Y)C 2,1. The fact that the tcrminal time is relatively independent

of the ccntroller configuration when y > O can be attributed to two

tively "slowly" to control inputs when compaved to configurations where
y < 0. The influénce of coupling between W and wy on the systen re-

E

;

E

[

i

|

E

L factors., First, we know that a "pencil shaped" vehicle responds rela-
|

[ sponse can be observed if one applies, for cxample, a unit step func-
i
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tion; when y < O the spin exis undergoes rapid excursions as the result

of this input. Therefore, when y > O there is sufficient time to appiy

A both positive and negative control torques about the x' and y' axis

before the spin axis has precessed to an unfavorable position. .
The second contributing factor is undoubtedly the control magni-

tude; that {is, Hc saun. Thus, it appears that the incresse in control 53

magnitude nearly compensates for the loss of two jets when ({Y)c 21

P

and y > 0. In contrast, from both the numerical solution and the re-

sults of the "ghort time" analysis of Section 4.4.2 we find that the

it . rar ek

"degree of control” providad by each system begins to differ when
(tv)c <15, y < 0. In the "short time" case the relative loss in per-
formance is attributed to the geometry of control set Qc. Restricting p
the control set to the real line [~1, 1] prevents the simultaneous and |
proper application of both a "race-brake" moment and a moment which

produces the required change in angular momentum Iz""saf

. As wentioned previously, the greastest difference in performance
of the two systems occurs when y < 0. A comparison of Figures 4.9 and
4,33 shows that for a fixed value of fy there i{s an increase in ‘I': as
y = =1. In contrast, the minimum time curves for the lL-jet conmtroller
be very close to limiting curve, defined by (4.87), when -1 < y < O.
Thus, unlike the case wheny> O, control set geometry (QB vs nc) becomes
important when the nutation rate is larger than the spin rate,

A comparison of the minimum time trajectories when control is

provided by both L-jets and 2-jets shows the similarity in response

when y > 0; Figures 4.17 through 4.19, 4,35 through 4,37 and the differ-

ence when y < 0; Figures 4,”1 through 1,24, 4.38 through 4.h0. Note \
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the excessive excursions of the spin axis in Figures 4.33 and 4.39 com-

pared to the optimal motion im Figures 4.22 and L4.25. In the lstter
cases the 2-jet system does not provide the "finenees" or "degree” of
control to prevent the spin axis from "looping" and thus traveling in a

direction opposite to that desired.

4.7.2 Influence of Initial Thruster Position‘:on the Optimal Control ;

Through a procedure similar to that described in Section L.6.2
minimum time controls have been computed in terms of the pair (g , tY).

Results for y = -0.2 are summarized in Figure 4.3L. Due to the in-

creased computation time (for the 2-jet system optimal controls must be

computed for 0 < B < ) only the disk shaped vehicle, y = -0.2, was
considered. '

Although optimal controls have been computed for only a single
value of y we can, nevertheless, based upon the results obtained to
this point, deduce the behavior of T; in terms of iy, y, and Bo* Let
us begin by reconsidering the results of Section 4,6.,2. Here, we
determined that the "degree of control" provided by the h-jet system is

" guch that the minimum time isochrones are nearly circular except when
fy <1 (y <0.6). In contrast, Figure L.34 shows that the loss of two
jets has significant influence on the sensitivity of T to change in

c

B, vhen L < 10. In fact, results of the numerical solutioas show that .

Y
the minimum time isochrones do not become circular until fy 2 30 for

y = =0.2. After examining Figure 4,33 we find that, in gencral, the

difference between the actual value of Tg and that predicted by (4.90)

incrcases as |7| increases. Therefore based on the bchavior of TE in
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in terms of y we would expect T to be sensitive to changes in Bo when

c
tY > 30 for [y] >o0.2.

4.8 Simulation Results for Control System D .

From a8 construction standpoint the single jet design is appealing
i because of its simplicity and minimum hardware requirements. Hence,
this controller would be useful in situations where the weight or space
vhich is allocated to a control system must be minimized. Also, it may
be desirable Lo apply the optimal control law for a singie jet in the
event of a failure of one or uore-of the jets in Control Systems (B) or
(c).

Optimal steering for the single jet was developed in Section 4.3
and i{s given qual.tatively by Equation (4.22). As in previcus cases
exact optimal controls (i.e., the pairs (g, T;)) corresponding to se-
lected sets of values of the dimensionless parameters EKO), iy, y, and
50 were determined by solving a numbar of two point boundary value
problems. From the results of this flooding process, which are pre-
sented in Figures 4. 41 through 4.53, we find that optimal steering for
the single jet bears little resemblance to that for the gimballed,
four, or two-jet controllers. This is due to the fact that control set
fp is not symetric with respect to the origin of the (ux-uy) refer-
ence system. Actually, certain dissimilarities were observed when the
switch;ng functipns were derived in Section 4.3. The necessary condi-
tion for optima{:ty requires that the optimal control contain coast

periods, and in this respect the miuimum time system resembles 2 mind-

mum fuel system. Arn additional characteristic which is pzculiar to
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the single jet is obsarved in Figures 4.4 and 4.45. Here we note that

the dimensionless final time is not a2 continuous functiom of EY. This
mesns that the maximum recoverable (reachable) sets do not expand con-
tinuously in all directions with increasing time.

For the purpose of the following discussion it is comvenient to
consider the optimel control in terms of iy. First, we find that the
dimensionless final time (Figures l4.4h and h.ﬁs) does not approach zero
in & continuous fashion as fY,-og. This is in direct contrast to the
behavior. of T in Control Systems (A) through (C). The lower limit of
iY (1.e., tY = 0) will occur, for example, when the control magnitude
becomes unbounded (i.e., M o). Thus 0 expands in the positive di-
rection and in the limit becomes the real line [0, »). However, unlike
QA’ QB’ and nc which expand symmetrically, QD remains unsymmetrical;
and for this reason the system is not completely controllable over an
arbitrarily small interval of time. Note that the lcwer limit of.Tg,
that is, the smallest subinterval of [0, Tb] over which the system is
completely controllable, depends upon both y and Bo*

Under certain conditions the influence of ¥ on the system's re-
sponse is quite different from that in Cases (A) through (C). Figures
L 44 and 4.45 show that the time required by the single jet to effect
a given change in the state of the system increascs zs y = 0 for
"small" values of fy. This is in direct contrast to thc behavior of
the optimal control for Systems (A) through (C) where T" decreases when
y = 0. Such behavior can be attributed to the degree of coupling which
exists between ax and &y' This coupling becomes weaker as y = C and is

non-existent when ¥y =0 (the system is not contreollable vhen y = O).
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Since a single jet can provide only positive (negative) control moments

there must be coast periods of sufficicnt duration to allow &y to be-
come negative at least once during the intervai (0, t:); this is necey-
sary since control must terminate with a thrust period which causes By
to incresse. In the ebsence of control By oscillates with frequency

rU therefore, the time required for By to change from + 5; to -u° {is

proportional to x/y. Thus the coast periods must increase in length as

y » 0. This requirement {is refygcted in the switching function, Equa-
tion (h.22), since the low frequency term dominates when both tY and y
are gmall (1.e.,|a1| > 1, see Figure 4.b1). f
B ; To illustrate the behavior of the controlled system when EY is !
small and, in addition, to attempt to justify the limiting value of

Tg, as given in Tigures .4l and 4.5, optimal trajectories of the epin

axis are plotted in the (ix - iY) plane (see Figures L.4t6 through .49)

Note that in all cases represented there are no initial coast periods;

that is, the jet is turned on at g = O even though the spin axis is

initially driven away from the desired terminal position. These fig-

F ures also clearly illugtrate both the forced response and the force

free motion of a spinning body -« a norm invariant system. Note the

rapid excursions of the spin axis in Figure 4.h9 compafed to the system

response illustrated in Figure L.46 (the final times ave the same in

both cases). In Figures 4.50 through 4.53 we have attempted to demon-

strate the characteristics of minimum time trajectories for vehicle

configurations of practical interest to the enginecr {e.g., v = 0.03,

y =+ 0.2). Values of EY used in the computation of the corresponiing

controls were selected to be similar to ihcse in previous scctions.
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CHAPTER 5
OPTIMAL CONTROL FOR JETS FIXED TO A NON-SPINNING PLATFORM

The controller configuration considerad in this chapter is de-
picted in Figures 1.1.E and 5.1. As shown, the basic spacecraft
consists of two separate sections which are connected at the axis of
symmetry by aﬁ ideal (frictionless) bearing. The front section has
been spun up to provide stability. The aft section which houses the
required sensors and four fixed reaction jets has a zero spin rate
with respect to the vehicle's axis of symmetry. The control problem
is again one of properly orienting the spacecraft with respect to
Coordinate System I starting from known initial conditions of the
vehicle's attitude and transverse components of angular velocity.

A control system mounted on a non-spinning platform offers
several advantages when control is required ip inertial space. For
example, the de-spun segment of the spacecraft, shown in Figure 5.1,
is fixed with respect to Coordinate System II and, therefore, only
experiences small changes in attitude with respect to the non-
rotating reference frame. Hence, this section of the spacecraft is
ideally suited as a platform for mounting attitude: sensors. In
addition, the optimal control law for the non-spinning jets should be
less complex to mechanize than those for the fixed jet controller
configurations, If the control jets are attached dircctly to the

spiuning vehicle, as in Configurations (B) through (D), then tho jet
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Yon-of f" times are explicit functions of the spacecraft's roll rate.
In such cases delays in the control loop could conceivably cause
considerable error between the desired and actual terminal state of

the system.

5.1 Equations of Motion

In this section the dynamical equations ‘for a spinning vehicle

-

are developed when control is provided by four reaction jets mounted

on a non-spinning platform., The specific control system considered

is shown in relation to Coordinate Systems II and III in Figure 5.1.

T

Figure 5.1, Schematic of the Control Jets Fixed to a Non-Spinning
Platform

Assume that one pair of jets delivers a thrust ?;.(t) and the
second pair ?;.(t). Thus, the control moments which appear in

equation (2.28) can be expressed as
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Ma(e) =a - £, (¢) (5.1)
Ma(t) =a - £, (t) (5.2)

vhere (a) is the moment arm. If the thrust of each jet is bounded

A AN
by F then Ifx.(t)lsl" and |fy,(t)]§ F. Define the new control variables

ux.(t:) and uy.(t) by

1 (8) = f*;(t) ) (5.3)
u (€)= f*;(t) (5.4)

thus
leg (0 s 1, fu (o) s 1 (5.5)

The control moments are now expressed in terms of ux,(t:) ‘and uy,(t:):

M () = Mu,(t) (5.6)

My.(t) M “Y'('_;) (5.7)

where M =a ¢« F

Combining (2.28), (5.6), and (5.7) yields the controlled equatioa

wa(@| fo -1 0 o]fa.m] [ o]
@ 1 0 o o |lu@| o 1% e
d
e = . <4
dt
Lx(T) 0O 0 0 O Lx(r) i1 9 uy'(r)
“Ly(x)‘ ;O 0 o© | 0 | —Ly(w) | L? 1 ]

e ~

(5 SR R SR

O e
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where
Iww, (1) 1
QA () =23 x 7, 8 ,(x) = _.._J.__..zwsw (0
x' M y' M
Lol (1:) N Iwi (1)
= -—-————-—-——- = -—go-ag-l-—.—.

Note that the control je_ts are assumed to be aligned with the x'- y'

axis; that is, the torque about either the x' or y' axis depends only
on the thrust from a single pair of jets. The boundary conditions

considered in conjunction with (5.8) are:

o
8.0 =8 Bl =0
A0 o
myl(o) = “’yt s ay'(TE) =0
2 2 2 2
A Ao Iz ws eo sin q;o ~ ZIZz ws 95 sin g A
(O) = (L)x' + ™ “ ( ) = = Lx
™ (5.9)
1 2(926 cos ¢ I 2(»29 cos ¢

£(0)=G°,-zso o ’I\.(TE)=ZSf Sy
y y ™ ’ y M Y

A ~ .
Solving (5.3) for ax,(TE): Qy,(TE), Lx(TE)’ and Ly(TE) subject to
(5.9) yields the following set of governing equations which must be

satisfied by the steering func tions u .(T) and Uyu(")=

f[u 1 (7) cosT+ Uy (T)sinT]dT + w:. =0 (5.1}
:.rE . A0 (;; 1)
{u (7)sin7 - uy,('r)cos 1]dv + Wy =0 PRRRD

o
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T
P Pl
‘{ ux,('r)d'r +Lx(0) =1L, (5.12)
" b (t)dr +1.(0) =T 1
guy.'r-r«»y o (5.13)

v

Thus, for those initial and final values of the state variables given

by (5.9), the two point boundary value probleﬁ is completely specified
A D A

by the physical parameters Qx?’ Gy? » Lx, and Ly and eo = 0 (or

by a similar set when 0, = 0). The mathematical problem is now one

£
of selecting from among the admissible controls that control which
drives the system from a given initial state to the given terminal
state in less time than any other admissible control.

Since the aim of this study is to investigate the characteristics
of the optimal control in terms of the system description and
boundary conditions, the two point soundary value problem must be
solved repeatedly as changes are made in the physical parameters.
One approach for reducing the resulting computational task i{s to
assume that the initial transverse components of angular velocity are
zero. This will be the case in a reacquisition mancuver when the
vehicle is not nutating at the time control is applied. Py making this

assumption we are then able to plot minimum time isochrones in the

A .
(Ex - Ly) plane with a reasonable expenditure of computer time.

5.2 Somz Symmetry Properties of the Control

)
Controls which satisfy the governing equations, (5.10) through

(5.13), when ﬁ&? = ﬁg? = 0, whether they are admissible or not, have

PN
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certain symmetry propertics when refereaced to the de-spun coordinate
system. That is, if a control has been found which satisfies (5.10)
through (5.13) for a specific value of *he pair @x’ %y) . then we

can exploit certain symmetry properties of the system in order to

dectermine the contrel corresponding to the pair (A <’ ’I:y) 141°

To demonstrate the isomorphic properties of the control we first

note that the terminal state of the system can be represented by points

ia the (I\.x - /ﬁy) plane when Q;, =Q;, = 0. For example, in Figure 5.2
the point 2 corresponds to a specific change in the normalized

anéular momentum as given by the pair (tx’ 'ﬁy)p . Algo note that the

(\ <’ ?'y) plane has been divided into a number of regions. First, the
natural divijsion by the ix and ?'y axis results in four quadrents
denoted by Q1 through Qh' Then Ql is divided by the straight line

6 into regions dencted by r, and r_. |

1 2

A point $1€ r, is defined as being "symmetric" to P1€Ty

when the following relations are satisfied:

£, - ()

(5.14)

). = &)

P Py

i

i‘utther, the points p2€Q2, p3€Q3, and Phth are defined as being

“"similar" to p,€Q, when the corresponding pairs (L , 1 )  satisfy
P1* N X y'py
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Py i
i=1,2,3 (5.15)
A a
("7) ) (Lx)
Pis1 Pi
N\
LY
Q2 5 Ql
//- : pl 6
A A
Py Py
[ "
LX
jph
P3
Q3 Qh

Figure 5.2. An Example of Symmetric and Similiar Terminal State Points

With these definitions we are now able to express certain relations
between the controls corresponding to terminal states which lie in

quadrents Q; through Q). First, if the conmtrol (u(), TF)p

: PRA
satisfies equations (5.10) through (5.13) when the pair (L Ly)p
1

defines a point in r, then the control corresponding to a symmetry

point in r2 is defined by the following relations?

(ux,(T))/\ = (uy,(r'))

Py P1 .
(uy:("))i;l = (%) . (5.1)

o atana AR T 4k R TANAAI LTS o



)

L2

(TE)al = (TE) T = (TE)Pl -1

Py
Verification of (5.16) is direct in that equations identical in form

to (5.10) through (5.13) are obtained if the mathematical manipulations
indicated by {5.14) and (5.18) are carried out. Second, if the control

(u(7), TE)p satisfies Equation (5.10) through (5.13) when the pair
1 .
{gx"iy)p defines a point in Q1 then the coutrols corresponding to

1
"similar" terminal state points in Q2, Q3 and Qh are given by:

(ux.(r)) - (uy.(f)) .

Pyt
u I(T) = ux'(T) i=1,2,3 (5017)
( ¢ )p1+1 ( )pi
(Tg) = (Tg)
Pisl Py

Verification of (5.17) is also direct; the mathematical procedure
follows that for (5.16). The consequence of Equations (5.16) and
(5.17) is one of achieving a substantial reduction in the computer
time required to plot minimum time isochrones in the (%x "‘ty) plane.
Thus, due to the symmetry of the isochrones ounly those terminal states

which 1lie in r, were considered during the flooding process.

5.3 A Necessary Condition for Time-Optimality

The maximum priunciple was used to determine nccessavy conditions

for the optimal steering functions. Forming the Hamiltonian




. L3
H= PO + PI(T){ ’wy|(T) + ux,('!) ]+ Pe('\') [ xo(T) + “yc(T)}

+ P3(T) “xc(T) + ?h(T) uyu(T)' (5.18)

Maximization of the Hamiltomian subject to the constraints given by

(5.5) occurs when

u (1) = SO [s () (5.19)

uye(7) = soN [sy.(riJ (5.20)
where

() = By (5) + By() | (5.21)

OESXORS OB ' (5.22)

The adjoints, Pl(r) through Ph(T)’ are solutions to the differential

equation
P, (1) 0 -1 0 0 P ()
P (1) 1 0 0 O P (1)
S 12 y (5.23)
PB('\') 0 0 0 o© P3 1)
_P“(T)_ _o 0 0 O© 1t P, () ]

and can be written in vector form as
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- . 1 r .
PI(T) cost -sint O O Pg
Pe(-;) sint cost O O Pg
= (5.24)
P (7 o
(%) 0 o0 1 o0 %
P, (7) o o o 1] |¥®
L J L J U d
In view of (5.24) the switching functions becdme:
8.0(7) = a; cos( T+ )+ oy (5.25)
sy.(-r) = a, sin( 7 + cx2) +a) (5.26)

The following remarks are a counsequence of the necessary condition:

Each component of the control vector assumes an extreme value
providing oy and a3(c/,2 and ah) are not simultaneously zero over a
finite period of time. 1In the case when either sx.(r) =0 or
sy.('t) = 0 for some interval T 5 TsT, in (o, TE) then the
SGN{ ] function is not defined over [11, 12]. Therefore, the
maximum principle provides no information as to the structure

of the optimal control.

Providing |a1| > |a3| ( [all > Iahl) then cach component of the
control vector 2(1) can remain constant over :11, 12] <2r.

If [ali < |a3l ( |a1[ < I<1kl ) then one or both components of
u(1) will remain constant over the interval (O, Tgl. As will

be shown presently, the relative magnitudes of the components of
the costate vector & have a very profound influence on the

behavior of the iterative procedure that was employed to compute

minimum time controls.
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5.4 Realization of the Optimal Steering Functions

In this chapter, as in previous omes, our goal is to investigate
the characteristics of the optimal steering functions through the use
of a flooding technique. As described in Chapter L, flooding involves
the computation of optimal controls corresponding to specific sets of
boundary conditions - in this case ordered pairs of the dimensicnless
angular momentum components'i; and ?; (the initial and final nutation
rate is assurmed to be zero). In the previous chapter, the basic
algorithm described in Appendix A, with modifications as given in
Appendix B, proved to be an efficient method for generating
solutions to a large number of two point boundary value problems.
However, a direct application of the algorithm to the control problem
cousidered in this chapter is not possitle since the controlled system
is not normal., In a non-normal system the existence of unjque optimal
controls cannot be éuaranteed; in fact, the optimal controls corres-
ponding to certain boundary conditions could very well be singular.
For example, ifal = Cz3 =0 or al = ah = O then either u;,('r)
or u;.(T) is singular; in the sequel it will be shown that the
remaining component must: (1) assume an extreme value, and (2) remain
constant over the interval (0, Tﬁ).

At this point we should note that the optimal control for a
non-normal system is not necessarily singular. In fact, in the
literature a number of optimal control problems have been considered
wherein the state space is divided into regions corresponding to those
initial (terminal) state .oints for which the optimal control is

singular. For Control System (E) we find, after examining Equatious
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(5.10) through (5.13), (5.19) and (5.20), that there exists terminal

states which cannot be reached if singular control is applied to the
system. In such cases the optimal steering functions are given by
(5.19) and (5.20); therefore, the iterative procedure described in
Appendix A can be employed providing the basic algorithm is modified
to account for the peculiar characteristics of sx.(r) and sy,(r).

Such modifications are made to ensure that thé proper number of switch-
ing points oczur in the interval (O, Th) at each step in the iterative
process. Recalling the control problem considered in Chapter L4, we
find that the computational process failed to converge when the

third switching point was lost from the interval (0, T). Here, due to
the particular form of sx.(r) and sy,(r) it is possible to lose all
the switching points during the kEE cycle of the iterative process

if !allk < Ia |k and la < Iahlk, Consequently the basic algorithm

1l
was modified to prevent this situation for occuring; the details are
dis;ussed in Appendix B. However, prior to any numerical computation
the question concerning the existence of singular optimal controls had
to be resolved. Therefore, in the following sections a necessary
condition for extremal singular control is discussed, the general

form of a singular steering law is developed, and an effort is made to

determine analytically those sets of therminal states for which the

optimal control is singular.

5.4.1 Singular Control
For the control system considered in this chapter it is possible

to test in a systematic manur~r for the existance of singular extremal
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controls. To do this we make use of the Hamiltonian which is a
necessary condition for time-optimality. If either component of the
contrel vector is singuEar over an interval [ T 12] c {o, TE] then
the corresponding switching function must be zero over this interval.
Suppose that sx,(r) =0 for 1¢ {0, TE]. Since the system is autonomous
and the final time is free, the Hamiltonian must remain constant over

this interval; and in fact
= o =
H = Po + Ph uy,(f) 0 (5.27)

IfP =0 then either Pz =0 or uy,(x) = 0 for 1¢ [0, TE]' Ph $#0
since the vector P(7) caunnot be zero; from the maximum principle we
know that the necessary condition for optimality implies the
existence of a non-zero adjoint vector. If uy,(r) = 0 for 1¢ (O, TE]
then almost every point in the (I:x - iy) plane is not reachable from
the origin (or recoverable with respect to the origin). Therefore,
in general, P_ # 0. Solving (5.27) for uy,(r) gives
Po : ) .

“yl(T) = - §Z . . (5.29)

Thus if the extremal control is singular then uy,(T) = constant. This

allows us to integrate (5.13) with the following result

c¥<r)

T% = { ! . (5.29)

y

[}
Hence, TE will be a minimum when uy, assumes an extreme value (i.e.,

u;.(T) = + 1). Note that the necessary condition is also satisfied

since (5.27) is a maximum when uy,(t) = 4+ 1. Therefore, if a point
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A
iu the (ﬁx - Ly) plane can be reached in finite time when the system

43 driven by control of the form:

ux,(T) = piecewise continuous function of T subject to ux;(T) <1
uy.('r) = i 1:

then the minimum terminal time is given by

*

A
= |L |. (5.30)

The result can be readily generalized to include situations when

sy,(r) z 0 for e [O, Tb]. In this case the control becomes:
“xn('f) =+1
uy,(r) = piecewlse continuous function of T subject to uy,(T) s 1

and the minimun terminal time is given by

)
-l R (5.31)

Thus, it is apparent that TE depends upoun the relative magnitudes of
'ix and'zy. That is, if the terminal state point .s reachable with
singular control then the terminal time is determined by the larger
member of the pair (ﬁ;,‘iy).

In the previous discussion one should note that (5.28) is only
a necessary condition for siugular control. In practice there may be

terminal states for which one component of the optimal control vector
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is constant and the remaining component is bang-bang and switches
according to either sx,(T) or sy,(r). Such a control is given by the
maximum principle if !a1|< ch3| (la1|< lohl)and chll >|ahi
(|a1|>»|a§|) respectively. Thus, for certain terminal states true
singular control may not be required however, the implication of the
necessary condition for singular control, or the non-normality of the
system, is the non-uniqueness of that componertt of the control vector
which does not remain constant over the interval [0, TE]. This
concept will be discussed further in the following section where both
the flooding procedure used to determine the minimum time isochrones

and the numerical results are summarized.

5.4.2 The Synthesis of Optimal Controls for a Non-Normal System

The iterative procedurc described in Appendix A can be employed
when the system is non-normal providing we are able to define
qualitatively those sets of terminal state points for which the
optimal control is non—singular.1 For the system considered here it
is possible to determine whether the optimal control corresponding to
certain termiral states is singular or noﬁ-singular by simply testing
to see if the control in question sotisfies Equations (5.10) through
(5.13). The specific details of such an analytic investigation are
discussed in the following paragraphs.

In section 5.2 we found that the optimal control possesses

certain symmetry properties. Therefore in the following discussion

1Subscquent to the work performed iu this report a mcothod was

developed for nmormalizing non-normal, autononous, linear systems(In].

i e AR a ek b an ¢ BT aas wd nd am N RA, SeMee avats W C o SOHAE
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only those controls corresponding to terminal state points in r, are

1
considered. The particular points chosen are showm in Figure 5.3
Our objective is now to derive the optimal control(s) corresponding
to points P thru p8;and, in addition, to determine the mathematical
and computational significance of regions ri % .
The time-optimal controls correspondin% to?x = mr,

s rf, and r

A
Ly =nT,m=2, 4, 6, 8, ..., (e.g., p, and p3) are unique and can

be written as follows: ux,(r) =1, uy,(r) =1, T§ = my for 7 [0, TE].

Control of this form is given explicitly by Equations (5.25) and

(5.26) when |01|‘< Ia3l, lall < Iah" 03 > 0 and )y > 0. However,

the steering function can also be classified as singular since, for

example, we can choose al = a3

*
free to select ux.(r) from the admissible controls, hence,

= 0 and ah > 03 in this case we are

*
,ux.(T) =1 for te[0, ™I,

1,
ll»‘n‘. [}
Pg Py
r?‘ 6
3nt '
P7 P,
2T
rP6 r% P3
1
Tt r], O
p5 Py
‘\-Cl ?.
L ] A i ’x
0 T o 3 L

Figure 5.3. Regions of Singular and Non~Singular Optimal Control
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The points Pg p7, 98 are representative of those terminal
states for which the optimal control is not unique. For example, the
following combinations of comtrol laws satisfy equations (5.10)

N .
0, Ly=m7r, n=2, 4 6, 8, ....

through (5.13) when i;

* * *

1. uxl(‘[) =0, “yl(":) =1, TE = m7 ,
r

2. ) _-g-_lfor0<'t_§ %‘—-T

* *
* - T = =
ux'(T) = {3 1 for =< 1 < ixf-L , uy,(r) =1, I, =m

ilfor%l—<1_<_ mr
. .

The terminal state represented by p5 is unique in that it repre~
sents the smallest value of ?&, when‘ax = 0, for which equations
(5.10) through (5.13) are satisfied by singular control. In order to
verify this claim we proceed as follows: First, if u:,(x) =1 for all

* A *
1€f0, Tb] and Ly <7 then from (5.13) we find that T_ <7 . Also,

E
if the transverse components of angular velocity are to be zero at
*

T = TE then:
e 0
J u (1) cost dt = [ sint dr (5.32)
o * 0

%

G 5
[ u (1) sint dt =~ [ cost dr (5.33)
0o X 0

It is apparent that (5.32) is not satisfied by an admissible UK'(T)

when 7/2 < Ty <7 and that (5.33) is not satisfied when 0 < T, < /.

A
Therefore, the optimal steering functions correspouding to Lx = 0,

AR RSN

[ N S

[
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0 <iy < T, must be defined by (5.25) and (5.26).

Following the procedure outlined in the previous paragraph we
can also show that terminal state points defined by the curve 6, when
‘i; < 7, are unreachable from the origin when the control is singular.

In view of the previous discussions the following generaliz=
ations concerning the optimal control are coqjectured. First, there
is at least one set of terminal state points in rlwhich cannot be
reached when ‘the control is singular. One possible boundary of such
a set is indicated by the closed curve 6& in Figure 5.3; the set is
denoted by ri. Since singular steering to points in ri is not
possible the optimal control must then be given explicitly by
Equations (5.25) and (5.26). A second set, denoted by ri, contains
those terminal state points for which the minimum terminal time is
given by f; = ‘f;l and [f;l‘s 27. Here, we are assuming of course that
u;,(r) = 1 for t¢[0, T;]. In general, we find that if control of the
form ux.(r) =+ 1, uy,(T) = 1, for <{0, T;] is to satisfy Equatioms
(3.10) through (3.13) when the pair (ix,‘iy) defines a point in ri
then u:,(T) must change sign at least three times in the interval
(O, T:). Exanining the switching functions we note that

uy,(T) =1 if ‘ali < !ahl and @, > 0. However, in vicw of the

L
functional form of sx,(T), it is evident that ux,(r) can switch sign
at most twice when 0 < T < 2w . Therefore, the control must be
singular; that is, sx,(T) = 0 for T{0, T:]. This allous us to choose
a particular u:,(T) from among the admissible controls vhich in i

%
conjunction with uy,(T) = ] satisfics the boundary conditions., Since

the system is not normal u x.('r) may ot be unique;  hove ver,
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* A
in any event, the control will be optimal since Tz = Ly when the

contrel is singular,

Finzlly, we conjecture that the characteristics of the optimal
control corresponding to terminal state points in ri are very
similar to those for points in r} and ri. That is, there are sets of

poeints in r% for which the optimal control is given explicitly by

sx.(t) and st,(T) (e.g., p2) and those for which the optimal control

is singular (e.g., Pg» Pps P8).

5.4.3 A Numerical Procedure for Computing Optimal Controls

In section 5.4.2 we showed that there exists terminal state
points which camot be reached from the origin when singular control
is applied to the system. Therefore, the optimal econtrol correspond-
ing to such states must be defined by (5.25) and (5.26). In such
cases the change in. state of the system and the optimal control camn

be related by an expression of the form
* *
x(t) = E@@, Tg). (5.3%)

If we assume that the'terﬁinal state for which the optimal control is
required does not lie on a switching surface which contains time-
optimal trajectories (i.e., if the total number of switching in

(o, T;) is at least three) then the numerical procedure described

in Appendix A with those modifications indicated in Appendix B can
be employed to iteraie for the pair QZ’ T:). The algorithm is then
applied repeatedly, as described in the following paragraph, to

solve a selected number of two point boundary value problems aud in
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this manner provide the information necessary to plot minimum time
isochrones in the (ﬁx ~'2§) plane.

By following the guidelines discussed in 5.4.2 it was found
that the iterative procedure could by successfully employed to solve
the required number of two point bcundary value problems. The
following cutline summarizes the flooding procedure:

1. The terminal state ix =?'y = T was chosen. as the starting point
for floocding process; from the previous discussion know that

this point cannot be reached from the origin with singular control.

¥*
A guass was made for the pair (Q, TE)p , and the iterative pro-
B b

cedure was then used to improve this guess until the boundary

conditions were satisgfied.

2. Systematic changes were then made in i; by applying the rule:

A A N . p
= (ﬁx)i - AL vwhere AL is a small (a L ® 0.5) positive

A *
perturbation in Lx' Using QZ, TE)i as a nominal control the

iterative procedure was then applied successively to compute

*
each pair QZ, TE)i+1° This process was terminated when either

141 ©

3. The procedure described in 2 was then repeated for now starting

uy,(t) =1 for 1 [0, T*] or (f; 0.

A A
points on the curve C. First, perturbations were made in Lx

b

A A A
and Ly according to the rule: (Lx)i+1 = CB )i - T

N A A

= - H L =L = t inating

(€§)i+1 (ﬁ;)i ALy starting from L y 7 and term g
A

when ix =L =0.1. Then, similar perturbations werc made start-

A A A A .
ing from L = Ly = T and terminating when Lx = Ly =37 . The'

results of this computation are summorized in Figures 7.1 through

”\
. » . \
5.6 where minimum time isochrones are plotted iun the (Ew - L.
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plane,
The purpose of Figure 5.4 is to show the characteristics of the
optimal control for terminal states in the neighborhood of the origin,
specifically for those points which lie within the square defined by

E
divided into two regions; as predicted in Section 5.4.2 the optimal

.

the'£¥ -'iy axis and the isochrone T* = 2r. The square is further

controls corresponding to those terminal state points enclosed by the
-dashed line are non~-singular and for points exterior the optimal
control is singular. The boundary between the two regions was defined

during the flooding process by those values of L and Ly for which
y,(1:) first became a comnstant, u ,( ) = 1 for TG[O T ] Optimal

controls for almost every point in the singular region of r, can be

determined numerically by setting

A
+
A
-
—
—

+ } for 0 <«

f
™

- ¥*
ux,(r) = |+ 1 for Tl T < 12 , uy,(t) - TE

1 for 12 < 1T < t3

*
1 fort € © <T,
L 3 E

I+

+1

and then iterating on the normalized switching tincs 11, T, and
13 until equations (5.10) through (5.12) are sat’sfied.

In Figure 5.5 minimum time isochrones are plotted in that
region of the (I:x -’iy) plane defined by the ,tx—lﬁy axis and the
isochrone T = 4T . Again, the dashed line indicates the boundary
between the terminal states for which the optimal control is noun-
singular and those externmal points for which the optimal control is

singular. Note that the point p3 which also appcars in Figure ©.7
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is unique in that the optimal steering functions (u:.(f) =1,
u;,(t) = 1, for (O, T;] ) corresponding to this terminal state can
be expressed in two different forms. First, by singular control
when sx.(T) =0and@) >0 or sy.(‘r) = 0and 0_ > 0 for .
Te [0, T;]. Thus we are free to choose either u:,(t) or u y'(t);

* *
in this case the obvious choices are ux.(f) =1 or uy,(z) =1 for

*
ve[0, TE]' Second, explicitly by sx,(t) and sy,(t) when lall < o 3|,

a s L]
_3>o, and lall <|ah| , 0y >0
In Figure 5.6 minimum time isochrones are plotted in the

a n ¥*
(Lx - Ly) plane for values of T, < 87 . Note that the sets of
terminal state points for which the optimal control is non-singular

remain fixed in size and shape and occur repeatedly when Ii;l and

A Pa) A
|Ly|are monotone increasing and le!, |Ly| > .

5.5 Some Comments on the Performance of Control System E

Comparing the optimal control for Jet Configuration (E) to
those for Configuraticns (A) through (D) we find several character-
istics which are important insofar as performance is concerned.
First, let us consider the "short time" casc (i.e., M >a~Izu§0f)
when contrel is provided by Configurations (B) and (E). Uader such
conditions the optimal controls for the two systems are nearly
identical. Here we find that the time required to reach a given
terminal state will be an absolute minimum when the thrusters are
initially oriented at hSo with respect to the required change in
angular momentum IzwsOf for Controlicr (k) (sce Figure 5.1L) or

—

rearly hSo for Controller (B), However, as illustrated in Figure
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5.4, the initial orientation of the non-spinning platform for which
the final time is an absolute minimum i{s no longer hso for those
terminal states which can be reached optimal steering when

't: 2 1.5. In such cases, depending upon the magnitudes of ?'x and

f; s both coordinate System II and the control jets should be rotated
until the terminal state point lies either on the x' or y' axis or om

the boundary which divides the (ix - iy) plane into regions of sing- °

ular and non-singular control. Note that when |€x|> 27 and

'I:'ylz 2T the minimum terminal time is relatively insensitive to
changes in the initial position of the jets providing the terminal
state point lies within the region of non-signular control. Also
note that sets of points for which the optimal control is non-
singular remain fixed in size and shape as both f; and ?&
increase., Therefore, in the limit, as {f;l + o and/or ﬁ;[ +®
the difference between the absolute minimum final time for a given

1/

2 A2 . .
value of Cﬂx + Ly) and that final time which results when pre-

rvotation places the jets at an angle of hso with respect to

Izugef becomes small when compared to tg . Hence a good approxim-
— *
ation to the limiting relation betwcen TE and (~x"ty) can be

determined by flooding the straight line defined by‘€¥ ='£y. The
results of such numerical computations are summarized in Figures 5.7
and 5.8.

From the analysis to this point it is evident that the optimal
steering functions for Controllers (A) and (E) have a common character-
istic, apart from those for Configurations (B) through (D), in that

they are not directly dependent on the vehicle's roll rate. Thus for
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certain values of the system parameters and boundary conditions the
optimal steering functions for Controllers (A) and (E) are constant
moments about the x' and/or y' axis. In such cases T: = T: when

three of the four jets in Configuraélon (E) are shut down and the max-

imum propellant flow w supplies the remaining jet.
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CHAPTER &
PERFORMANCE ANALYSIS

This chapter presents a comparison of the performance capabil-
ities of Jet Configurations (A) through (E). ‘Since we are concerned
with minimum time solutions the performance of a control svstem is
based on the time required to effect a given change in the system's
state, In order to make a fair comparison of the relative performance
of the five jet configurations it was assumed that the maximum rate
of fuel flow is the same for each system (i.e., by === s
QE). This assumption also allows us to readily compute the amount of
fuel required by each system to effect a given change in the state
point in minimum time,

Of the two classes of boundary conditions considered in the
previous chapters there is one which is common in all cases - namely,
that defined by those initial states where the vehicle is not nutating
at t =t (1.e., g(to)'= 0). Hence, in the sequel we will be con-

cerned with the ability of each control system to effect a spin axis

reorientation.

6.1. A Performance Comparison When wst¥ < 10x%

Let us begin by comparing the performance of the five controllers
when a reorientation of the spin axis is to be accomplished within
five or less revolutions of the vehicle about its axis of symmatry.

To provide the required data, results of the flooding process for
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6.2 Control System Performance When Wtk >> 1

In contrast to the features of the control problem discussed in
6.1 are those when control is applied cuntinuously, in the case of

Controller (E) a "bang-coast-bang" mode, over a long period of time.

I we
Such is the c;se, for example, when w << —5;%—5 . In the limiting
I u;ef . P LT
case when ;éi—-—» o both the analytic and numerical solutions dis-
sp

cussed in previous chapters show that the minimum final time is re-

lated linearly to the change in angular momentum, Summarizing these
results we find:
Configuration A

t) = (6.1)
Configuration B

tf = s (6.2)
Configuration C

tf = "'éi'?,z'f: (6.3)
Configuration D

tf = (6.4)

Configuration E

tf = i : (6.5)

Note that in Configuration {E) the thrusters are initially aligned

hSo with respect to the change in angular momentum Izwge

I
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Comparing the control systems in terms.of the amount of fuel
required to carry out a given change in the state point in minimum
time we find:
1. The four, two, and single jet controllers consume 57% more fuel
than the gimballed jet.
2. Four thrusters mounted on a non-spinning glatform consume

approximately 41% more fuel than the gimballed jet,

6.3 An Integrated Design Concept

In situations where minimzation of the time or fuel required to
control a spacecraft is of the utmost concern then the integrated
design concept becomes important. One way to formulate this notion

mathematically is as follows: Given the dynamic system

2’. = .f.(.x.(t)’ E(t)’ _Q ’ t) (6.6)

where the control vector u has components Ups Uys eee U, M € n which

are constrained by
|u1| + | u2| e ]lﬂn| < K (6.7)

and { belongs to an admissible parameter set E . The optimal coutrol
problem is now one of selecting the dimension of the controller (m),
as appropriate !, and u(t) so as to maximize (minimize) the cost

functional
t

1
J= f: oL (x(t), u(e)t,t) de.

o]

Admittedly, the problem of choosing (u*(t), m*, {¥) would be a

difficult one; however, in cases where the cost functional is
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sensitive to changes in (m) and/or { considerable improvement in
performance may be obtained.
In previous sections we noted that control jet configuration . *

has considerable influence on both the minimum time and fuel required

L e s ¥ ARBn 2  ed HADRK IS 4

for spin axis reorientation. Moreover, the simulation results indicate
that certain control systems are "better" than others. In view of
this observation let us now consider the concept of integrated design
as defined in the previous paragraph. For the attitude comtrol
problem this notion amounts to selecting both the control system

and vehicle geometry so as to minimize the final time. To determine
the influence of the vehicle's principal moments of inertia on the
performance index we can make use of the numerical results presented
in Chapters 3, & and 5, Moreover, by systematically changing 7 in
these solutions we are able to make certain observations as to the
"preferred" vehicle shape.

A cursory examination of the simulation results allows us to
make the following generalizations when the vehicle is a right
circular cylinder; to-include operational constraints it is assumed
that the vehicles mass remains constant and that the inertial stiff-
ness Is specified; i.e., Izws = constant:

Controller (B)
' A disk shaped vehicle is preferred. Changing y from +0.8

to -0.8 reduces the minimum final time approximately 25%,
Controller (C)

A percil shaped vehicle is preferred. Changing y from -0.°

to +0.8 reduces the minimum final tine by approximately h °
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Controller (D)

A pencil shaped vehicle is preferred. Changing 7 from -0.8

to +0.8 reduces the minimum final time by approximately 257,
For this controller there is a considerable loss {n per-
formance when 7 approaches zero(changiig from ¥= 0 to
7 = <0.8 reduces the minimum final time Sy approximately
50%). '
Note that the above conclusions are the result of choosing T such
that the solution for T* is not a linear function of the change in
total angular momentum - 1f the final time is close to that given

by Equations (6.2), (6.3), or (6.l') then vehicle geometry becomes

unimportant.
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CHAPTER 7
DISCUSSION AND CONCLUSIONS

In this chapter we first summarize the basic approach taken in
the solution of the attitude control proﬁleﬁ;'resulcs of this work are
then discussed in more detail; and finally, extensions and uses of this
study are suggested,

Through the use of both analytic and numerical solutions we have
determined exact, minimum time, controls corresponding te certain
classes of boundary conditions which are of engineering interest.

The basic approach was to provide quantitative results in a form which
allows one to deduce the qualitative structure of the optimal control
for a general class of problems. To provide results vhich would be
useful in the evalu;tion or selection of spacecraft attitude control
systems a number of different control jet configurations =were comsider-
ed. Thus, the overall approach was to synthesize optimal controls for
various realizable control systems in a manner which allows the
engineer to readily determine such factors as: the relative efficiency
of a particular jet configuration, the characteristics of the optimal
steering law in terms of the system parameters and boundary conditions,
and the minimum time required for correcting spin axis attitude errors
in a given spacecraft. |

In the text optimal controls are presented for two -asic classes

of boundary conditions. The first corresponds to those situations where
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the total angular momentum vector and the spin axis are aligned st the

initiazion and termination of control. The second set includes those

where the vehicle 1is nutating at the time control is applied. In the

latter csse the objective was to reduce the transverse angular rates
to zero and at the same time drive the spin saxis to a pre-determined
position .

Exact optimsl controls for Thruster Configurations (A) through
(E) corresponding to initial and final states of the sbove form were
then computed for & number of vehicle configurations ranging from
pencil to thin disk shapes. The results are expressed in terms of
from one to four dimensionless parameters. The number of parameters
required to completely define the control problem depends on both the
jet configurstion and the initial and final stetes. For Controllers
(A) and(E) it was possible to combine the system parsmeters and the
spin axis position errors into st most two dimensi<nless parameters,

thus obtaining control laws which are not explicit functions of the

vehicle's moments of inertia. Hence, the results are applicable to

. any vehicle configuration vhich has one axis of symmetry.

In situations where the minimum time required to maneuver a
spacecraft is of importance one would normally employ reaction con-
trollers which produce a sizeable thrust. Hence, the characteristics
of the optimal control under such circumstances will be different from
cases where the available control forces are very small., In view of
the results presented in the text we are able to define qualitatively
and to some extent quentitatively three "modes" of operation which

characterize optimal steering corresponding to the boundary conditions

o
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described previously, These "modes" are ideatified in terms of the
response characteristics of the system, the control magnitude, and
the control jet configurations.

The first is characterized by the "short time" control problem.
That is, the time over which control is applied is small compared to
either llms or I/Izws. Control in this regio? is typified by the
limiting control for the gimballed jet; for this jet configuration
optimal steering becomes "race-brake" when ﬁ;»o. This mode also
characterizes, though to varying degrees, the behavior of cptimal
steering for Controllers (B), (C), and (E). For these jet configur-
ations, as well as the gimballed jet, T*s0 as Zy»o; thereZore, the
systems are totally controllable., However, this limiting behavior
does not occur in Controller (D). That is, Tﬁ is not a continuous
function of Ly’ in agdition (TS - msto) = constant # O as M o
therefore, the system is not completely controllable over an
arbitrarily small interval of time. This is due to the fact that
optimal steering for the single jet contains coast periods.

Response of a spinning vheicle to optimal control whan the
interval [to, tf] is "small" is illustrated in Figures 3.1%, k.17,
4,35 and L.L46. Here we observe the onset of excessive excursions of

the spin axis as the dimension of Q is reduced and/or as t:e coupling

‘between the control and state becomes weaker. We also fin? that in

the "short time" case optimal steering for Controller (E) can never

be singular.

The second mode of operation is characterized by the transition

region betwcen what can be defined as the "short" and "lor; time"
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solutions. In such cases the control moment is sufficiently large to
effect a reorientation maﬁeuver within approximately one to ten
revolutions of the spacecraft about its spin axis. For a given
control magnitude the region is a function of both the vehicle's
moments of inertia and the jet configuration. Typical thrust require-
ments for controlling, within this time period, a cylindrical shaped
vehicle which is spinning at a high rate are ﬁ}esented in [9].
Response of the system when operated in this range is illustrated in
Figures 3.18, 4.20, 4.23, 4,26, L.4O and L4.53.

The third mode of operation is characterized by the solution to
the "long time" control problem., For most vehicle configurations this
situation occurs when the available control moments are very small
compared to the required change in the system's total angular momentum.

1 u?g
In the limit when -$—E~£

awl
sp

[to, t? ] is directly proportional to the change in angular momentum;

-» o we find that the control interval

the exact relation depends, of course, on both the initial and final

states of the system and the control jet configuration. For operatiomal

_spacecraft such as Syncom, Early Bird, etc., where the control moments

are indeed small compared to the total angular momentum, we find that
the actual minimum maneuvering time is very close to that predicted
by a linear relation.

The rate at which the actual solution approaches that defined
by a linear relation depends upon both the thruster configuration and
the vehicle's momeats of inertia. For the gimballed jet an empirical
approximation to the exact solution is given by Equation 3.26. In

the case when control is provided by four jets the oscillatory




177
behavior of the actual solution damps out very rapidly when Iz/I > 1

(see Figures 4.9 and 4.13) and for the two jet controller amping
most rapidly when Iz/I = 1 (see Figure 4.33)s However, when the control
is provided by one jet the situation is somewhat different. Here we
find that the minimum time curves (i.e., plots of the mmerical
results relating Tg to ﬂy)are discontinuous aﬁé epproach a linear
relation asympiotically; deviation of the actual solutions from lirear
depends very strongly on the vehicle’s moments of inertia. In fact,
the difference becomes infinitely large as Iz/IaI (the system is not
controllable when Iz/I = 1) and {s a winimum when 1 - Izll-> 1.
In cases where the vehicle i5 nutating when control i{s applied
we have demonstrated the characteristics of the optimal steering
functions in terms of the required changes in the total angular
mormmentum, For example, it has been shown that the optimal control
which satisfied boundary conditions typified by Case 1, Figure k.5,
approaches the minimum time solution found in Reference [1] when the
ratio of the initial transverse component of angular momentum to the
maximum control moment.becomes ''large". in addition, the difference
between optimal control for the fourth order plant considered in this
report and that corresponding to a seccnd order system which includes
only w_and uy depends strongly on Iz/I. ]
In the design of a physically realized control system one must
consider the characteristics of the optimal steering law in addition
to performance. From this standpoint Controller (E) is appealing

since in most casds one can rotate the non-spinning platform to that

position for which the optimal control is singular., This meauns that
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one jet operates "full on" over the interval [to,t§] and the remain-

ing pair is driven by either a simple bang-bang or comtinuous control
law; the choice between bang-bang and continuous depends on the
porition of the non-spincing platform and on the allowable fuel con-

sumption. This contrel law is appealing since the system does not

WWSKWW@“W{ R ‘;,:.': R

have to respond to complicated bang-bang or on-off strategies as in
Configurations (B), (C), and (D). Alsc; it wes found during the com-
putation of optimal steering for the latter contrcllers that the error
between the desired and actual terminal states ic sensitive to errors

: in the switch times. This was particularly true in cases where the

% g vehicle 1s disk shaped (i.e., lz/I > 1) and is nutating at the time

‘ ' control is applied.

In terms of coutributing to control theory we have shown how the

properties of controllability, total controllability, and normality

BRI AN,

determine the characteristics of the optimal control for a realistic

system. Ir addition, it has been demonstrated to what extent these
notions are influenced by the allowable control set. Further, a
_pefformance compérison in terms of the time and fuel required to re-

orient the spin axis through a given angle show: that certain control

A g e DA R O

jet configurations are "better" than others, This difference in per-
formance can be related to the recoverable set ccncept as discussed by
Athan and Fald, 13}, in their solution to the angular rate control

problem.1

1The influence of coutroller configuration on periormance is also

discussed by Dixon [21],
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In addition, both the development and the problems associated

with the application of an efficient iterative procedure have been
discussed in detail. Such documentation of the behavior of a pro-
cedure designed to solve two point boundary value problems is necessary,
and too often neglected, if we ave to compare the utility of various
numerical schemes when applied to practical engineering problems. In
the present case a Newton type iterative proc;;ure was employed to
determine time-optimal controls for a fourth order norm-invariant
system,

We have also shown that the method of sclution, closed form vg
numerical, is dictated to some extent by the allowable comntrol set.
For example, in the case of the gimballed jet where QA is a circle of
unit radius in Rz, we were able to solve the two point boundary value
?roblem in closed form‘for a certain class of boundary condifions.
Thus, it appears that by "smoothing" the allowable control sel le.g.,
approximating a hypercube with a super ellipse) one has an increased
chance of solving for the optimal control in closed form.

‘ An obvious extengion of the present.work would be to the problem
of properly reorienting and stabilizing an axially symmetric space-
craft when the spin axis attitude error is arbitrcrily large. From
preliminary analysis we have found that when contr?l is provided by
a gimballed jet both the dynamic system and the optimal steering
functions can be represented by a set of four linear and three non-
linear, first order, ordinary differential equations. In cases whete
the total angular wmomentum vector and the spin axis are aligned at the

initiation and termination of control, and either the initial or

e b VDSR2t
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final position of the spin axis is colinesr with the z, &xis, then
the system psrameters snd boundery conditicns are completely specified
by two dimensionless parsmeters. To {lluminate the control problem en

spproach similer to that described in the first parsgraphs of this

chapter could be employed to determine both the quantitetive snd

qualitative structure of the cptimal control, Since rapid convergence

.

is rsquired if one is to solve a number of two point boundsry value

B e G B e LT - 22 R

problems, a technique similer to thst proposed by Plant [1>] may be

required. The change between the iinesr and non-lineer cases could
then possibly be effected by modifying the dimensionless parameter

used in the linglr solution while retaining the dimensionlass change

in the sttitude sngle, The first spproximation would then be the

-

linear solution.

FE Y

In terms of the physical parameters the resulting optiﬁal con-
trols would undoubtedly have the same qualitative structure as those

for the linear model, In fact, in those cases vhere the required

P e A e 1y, Y g X

change in angular momentum is large compared to the maximu= control
: térque the optimal control becomes nearly a steadily sppli=d moment,
| depending upon the controller configuration, snd the respc-.se of the
system is typified by that of the iinear plant. Ilence one should be
sble to make use of the results presented in this report to determine
the minimum time required for artibrarily large reorfentat‘ons of s
vzhicle's spin axis, |

The ultimate objective of an optimal solution to the attitude
control problem is, of course, to develop the control in s:ate

feedback form. In the literature one finds many approachz: to this




~ 1is given explicitly in terms of the system's current state. Such i
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problem, However, due to the sensitivity of the system's response to

errore in the optimal control (e.g., errors in the switch times) |

the only practical solution appears to be that in whick the control

closed form solutions have been found when the cost functional is
described by some combination of the state error and the control effort.
It has been shown that large penalties on the 'control effort tend to

"soft" limit the control magnitude. However, in general, the resulting

control does not resemble minimum time steering. Thus it would be
worthwhile to investigate the problem of selecting a cost functional
which penalizes excessive time and at the same time allows a closed

form solution (1f.e., & quasi-optimal solution to the minimm time

problem).
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) APPENDIX A

AN ITERATIVE PROCEDURE FOR COMPUTING
TIME-OPTIMAL CONTROLS

A1 Introduction

The esqustions of motion for a spinning body, when motion is
limited to smell angular excursions, can be described by a vector
differential equation of the following form:

a(t) = Ax(t) + B(t) u(t) (A.1)

Time-optimal controls for certain cases of such s linesr system sre well

known, e.g8., wvhen X 1is a two dimensional vector representing sngulsr ve-

locity. However, for systems of third order or grester the satisfying

of both the prescribed initial and final values of the state variables
ind the necessary condition for optimality usually requires a computa-

tional scheme which involves the use of a high speed digital or analog
computer.,

During tie past decade many schemes for computing optimal con-

trols for both linear and non-linear systems have been developed.1 In

this section we present a specific technique for snlving two point

boundary value problems of the type described in Chapters L and 5.

Specifically, the iterstive procedure proposed by Knudsen [15] with

certain modification suggested by Plant [19] is employed to solve for

the time optimal controls in Systems (B) through (E).

.

A comprehensive comparison of & number of procedurcs for computing
optimal controls for linear systems is presented in (19,
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A.2 FPhilosophy on the Selection of a Computgtional Procedure

The iterstive procedure discussed in the sequel was developed in
view of the requirement for solving s lerge nusber of two point bound-
sry value problems with & modest expenditure of computer time, Addi-.
tional considerations in the synthesis of this algorithm were the
dynamics of the plant, and the psrticular controller configuratioms
end boundary conditions described in Chapters l snd 5. 8ince the ob- -
Jective was tc compute optimal controls for a psrticular plamt no
sttempt wes made to introduce new theorems pertainimg to the conver.
gence of sn iterative procedure. In place of formtlly extending
Knudsen's algorithm to include non-sutonomous systems with vector
controls, the behavior of an fterative procedure developed through a
direct extension of his work is discussed extensively in Appendix B.

The choice of a Newton type procedure (Knudsen's snd Plant's
algorithms rely on the basic Newton recursive relstion) was motivated
by its simplicity, its streightforward approach to the problem, and by

its rapid rate of convergence when the guess (q, tf) ic "close enough"

_to the solution (q, tf)f. In this procedure g and te " axe sdjusted

gimultaneously which results in an efficient iterative scheme, Finally,
an upper bound on the rate of convergence of this method exists when
the derived and optimal controls are "close".

A.3 Statement of the Problem

For systems described by a differential equation of the form
x(t) = A(t) x(t) + B(t) w(t) (A.2)

The initial, Xy and final, X¢» States are related by the expression

TSI ik N e e AT ARy T AP TR R, S e e f wF T
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1= otepty) [5,0 [ e oo (A.3)
t

o

vhere o(c,co), defined for all (to,t), is a fundemental matrix of
solutions of the homogenous system satisfying the additional require-
ment that O (¢ ,t ) = [I] for all ¢t .
o © © .

The systems described by Equation (2.27).are normal vhen the
admigsible control sets are defined by nB through QD; therefore,
the maximus principle provides both a necessary and sufficient
condition for the time-optimal control u%*(t) (in the case of ﬁn only

& necessary condition). In Chapters 4 and 5 we found that the
Hailtonian 1is a maximum when

SGN[B'(t)P(t)]: Systems B, C, and E

u'{B*(t)P(t)) : System D

ut(t)m . (A.4)

Where P(t) is a solution to the systems adjoint differential equations
P(t) = -A'R(t), P(t) =2. (a.5)

Hence, for non-trivial solutions to this equation the control u*(t),
ni[to,tfl, is well defined except at a finite number of switch times.

Substituting (A.4) and the solution to (A.5) futo (A.3) gives

t
£ SGN[B' (t)P(t)]
-1 -
L =0 (tf,to) [Lo + fo (:,:O)B(c) o' (8 (£)2(8)] d{'. (A.6)
t

[+

p—
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The only terms on the right side of this equation which are not fixed

by a description of the system are @ and t_.. Thus {A.§) can be re-

f.
written as

Xe = El(tf) + ?.2(9.’ tf) =F(@, tf) . . (a.7)

To define F we choose £0 4n Rk and a t fe R1+, then the fanitial
value problem defining F is given by Equation; (A.2) and (A.5). Por
s given system description the problem of computiné an optimal
control ([:o,tf*], u*(t)) which takes the system from a specified
initial state X, to a given terminal state Xe is equivalent to that
of determining an inverse to (A.7). In general, this inverse camnot

be determined analytically; therefore, an iterative techaique

is proposed.

A.L An Iterative Solution

In describing the optimal control problem we have takén the
maximum principle point of view and have constructed an equivalent
two-point boundary value problem. This two-point boundary value
problem defines a function F which maps the boundary conditions on
the differential equations into the state space. Hence, the solution

to the optimal control problem becomes equivalent to finding g-l.

A.4.1 Newton's Method

The iterative procedure is to guess both the unknown boundary
conditions on the adjoint system at t = t:o and the final time tf, !
then solve the initial value problem and find the error in the

conditions at the terminal point., At the same time, the first-order

N
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effects of changing the guessed values are calculated. These first-

ovder effects are then ugsed to find a better guest according to the

' following recursive formula:

-1
x g v, (e, tp]
(Atf)k ag atf J .
(A.8)
. &y = T, e, te), O% (a.9)

Qo™ Kt g s (), = (e + (), (a20)
This relation with Ii = 1 is the basic Newton procedure.

Ab.2 iodifications to the Newton Procedure

The iterative procedures due to Knudsen and Plant differ from
the basic Newton method in two respects. First, ifJAYfis large the
Newton procedure may not converge. Therefor4, the algorithms due to
Knudsen and Plant incorporate précedures for selecting the iterative
scale factor Ii. An additional difficulty associated with the Newton
epproach is one of insuring the existence of G-l. In view of this
requirement, Plant approximates the optimal regulator problem with a
modified optimal regulator problem (the target is assumed to be a
hypersphere centered at the origin) and then establishes conditions
under which G is non-singular,

However, due to the fact that the eigenvalues of {2.27) and

(2.28) with zero real parts occur with multiplicity, the ecnditions
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under which Plant's iterative procedure can be spplied with success
are not evident. Hence an iterative technique similar to Knudsen's,
which incorporates certain procedures pr-oposed by Plant, was develop-’
ed specifically for solving the optimal control problem considered im
this report. The basic algorithm i{s summarized as follows:

1. Knudsen's recursive relation, which is zimilar to (A.9), was
modified to include Control Systems (B) tﬁrough (E). The co-
state vector g(t) was normalized with respect to one component
ofq; hence, G is an 4 x L matrix,

2. A procedure was incorporated which prevents the computation from
"hanging up" at a switching surface,

3. Plant's method for selecting Pk was employed to insure rapid
convergence,

ki, Starting values for.the pair Qz,tf) were selected as indicated
in Section 4.k.2.

A.4.3 Derivation of the Recursive Relation for Control Systems (B)

through (E)
Following Knudsen [15] we find that for the regulator problem

& first order relation between AX and AV can be obtained from a Taylor

series expansion

aye = Elo+ o £+ o) - E(9, t)) (a.11)

or

Hat)  OHer) ]
A.Zf =TAQ +'-""'é"t”’f"““ Atf + R (Aolc)
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where R is the remainder to the linear terms. If we neglect the

higher order terms (A.12) can be written as
oY = G(a, cf) AV, (A.13)

Reducing‘ALf by an appropriate scale factor and after performing

the required inverse we obtain Equation (A.93. In general, G s not
square and, therefore, must be modified such that f{t becomes in-
vertable and yet retains it ;riginal mapping properties. Such
elterations are discussed in the following section and in References
(15] and [19].

The first order relation between the required correction in

the terminal state A&f and the corresponding change in QZ, tf) is

carried ocut in two parts., First, the effect of varying the switch

times and the final time on the state K(tf) is expressed in terms of
a Taylor series expansion. Then changes in the switch times are
expressed in terms of a Taylor series expansion. Then changes in the
switch times are expressed in terms of incremental changes in Q.
Equation (A.4) implies that the components u*j(t) {for the
cases counsidered in this report jmax = 2) of the control vector
u* are plecewise continuous and assume extreme valyes over the
interval [to, t?]. if uj(t) changes sign hJ times in the interval

(to, tf) at the times t, then Equation (A.6) can be expanded in terms

of the switching times as follows:

13
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(A.1L)

ul(to)

ua(to)

In general, Equation (A.14) is not satisfied. That is, the terminal

state corresponding to "guessed" values for both o, which specifies

the switching times, and tf

is not the required X

£

70 determine

corrections in the switching times and the final time we form a first

ord.r variation of (A.14) in a manner similiar to thos of [A.12).
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Thus,

&g = G, (£)At + at G () + f (A.15)

where R s assumed small compared to the first order terms and

(1)) = (1),

(), - ()| G

Alk = - f(t,‘t )B(t) gk(r.) dt (A.lé)
B RN IS °

(4)g - (1))

- NP b oo Tace o
¢ (eD+.. (-1) 1 (¢ ,’;1 : Lt (1) 2°12(t§l u(t )
| .
Gl(_t_) = =
1 hl'\ 1 : 2 ha" 2
8 (D (1) ou(:)= 8 _(Ir...(-1) 8 (t) bua(to)
" h h 1Tr N (A.17)
(1) %8 (e (D)8 (&) |[u(e)
Ge(tf) = _ . ) (A.18)
b, h
_(»1) o (tg) (1) o‘z(tf)_ _“e(to)_
2T
A
G
g= 2 (A.19)
"1
T
e 2—
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Note that due to the particular form of the boundary conditions consid-
ered in this report, (xl)f = (Xz)f = 0, and the fact that xl(t) and
xe(t) are uncoupled from X3(t) and xh(t), the transition matrix can be
eliminated from (A.1lk) by operating on both sides of this equation

~1
with 9 (:f, t,).

If the control u(t) is an optimal controller then the following

condition was found to be necessary

SCN [S(t)]: Systems B, C, E
u'(t) = (A.20)
u' [s(t)]: System D

where
8(t) = B'(t) B(t). (A.21)

The switch times ti occur when

]
Sj(ti) =0, 1=12,...h,y § =1,2,

3

Using (A.21) we can now relate small changes in the initial co-state

&2 to variations in the switching times Ati. Expanding the switching

functions S, in a Taylor series about the known switch times we find

b
s (1.-j o)
i 3 - 3 U= 3
sj(t:1 +Ot, &+ M) = Sj(ti’ a) + = oty +
i
(A.22)

3 a3 (tj, o
e L LU
r=1 ao% r '

Actually, we have a total of (hl + he) equations similiar to (A.22).

o tn oW Rk AN gt et
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Setting

sj(ti + A:-;', o+ 20) = sj(ci, Q)

since these points must be zeros of's1 and sa and zolving the resul-
ting equations for the perturbations in the switching times gives

(o]
Atj .. 1 % Sj(ti,. Q) M.
i 38 (ti' g) r=l aar r

. aJ

i

(A.23)

Here we have assumed that R is small compared to the first order terms

and that

3, (¢,
—1-(-%—%2 # 0. (A.24)

ot 1

Conditions for the above inequality are discussed in [15].
Combining (A.15) and (A.23) we can readily form the variational

equation relating AQ and At. to AX

sy = 6, (e, o)y + ot G, (t ) (A.25)

By scaling Ax withT we obtain a recursive relation of the form of
(a.9).
A.4.4 Evaluating ¢!

In order to solve for the required incremental inverse relation

AV = 6lay (A.26)

the (4 x 5) G matrix must be inverted. This is impossible to do

directly since G is not square. Knudsen [15] overcomes thiz difficulty
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by augmenting G with an (n + 1)'t row which 1is independeat of the
others. However, for the ;ontroi problem considered in this report and,
in general, for systems to which the algorithm applies, the problem
associated with G being non-square can be solved in a number of ways
In the following paragraphs we consider the possibility of reducing G
to a (4 x L) matrix. Such a procedure is desirable since the computer
time required for evaluating ¢! would be reduced.

In the previously described iterative procedure the maximum
principle supplies a necessary condition for time optimality. This
necessary condition implies that the projection of u(t) on P(t) must be
a maximum for all te(t,, t.]. Hence, gf(t) 1s independent of ||P(t)].
Therefore the number of independent initial co-states can be reduced to
three if g(t) is normalized with respect to one component or a combin-
ation of several components of &. This technique is tllustrated in
Chapters 3, 4, and 5.

It should be noted that the normalizing element must be chosen
with caution. First, g(t) must not be normalized with an element which
would normally be zero. For example, if a, = 1 in Chapter L thea o+
for certain values of 7Y and T&. Second, if.g(t) is normalized improper-
ly certain control sequences may be eliminated., For example, consider

the double integrator plant when the cost criterion is time. For this

problem the optimal control {s given by

u*(t) = SGN [oz1 - aat,]

*
I£Q, =1 then u (0) = -1, and vhen @,

monctonically decreasing function; thus, the control sequence

= 1 ve find that (al « t) is a

B s e ”
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-l:tst
1

u(t) =

+1

*0

t >t
1

cannot be obtained by iterating on a:. slone,

The previous examples illustrate seversl pitfslls which can
arise if P(t) is normalized improperly. In o;'der to use this proce-
dur; successfully one must exsmine the characteristics of the switch
functiong, the dynamic system, and the boundary conditions before
choosing a normalizing element.

AL.5 Selection of the Iterative Scale Factor

From both the theory and applicetions we find that the itera-
tive behavior of a Newton type algorithm is directly related to the
choice for I‘k.a The procedures for selecting Pk described in the
sequel were motivated by the requirement of achieving a rapid rate of .
convergence and by the characteristics of both the switching functions
for Controllers (B) thrcugh (E) and the Newton type fterative proce-

dure,

1deally we would iike to choose 1"k such that

Iaxy, | - :1;.‘5 1Ilmt( Ve (D) tfkfgpk))il. (A.27)

However, under certain conditions the problem of ensuring the exist-
ence of G"1 supersedes thst of achieving rapid ;:onvetgence, Hence,

several schemes for selecting I', were employed. '

k

21?01' autonomous systems Kundsen ﬁls]ﬁscusses the problem of finding
a Pke(o,l] such that {ia Xy, |l < A gl
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Scheme 1: This procedure was developed by Plant for the ftera-
tive mzthod described in Reference [19]. The only justifications for
adopting this scheme are: (1) the algorithm employed in this report is
similiar to Plant’s, (2) it appears to work, and {3) the convergence
charscteristics of the two methods are similiar when this method is
employed.

Step 1: Choose I‘k = 1 and solve the initial value problem.

" Step 2: If "AXK-I-J," i%llek" then set T, =~ = 1 and proceed to

the next iterat.on. However, if [Ax .|l ziliAl(k" then

solve the initial value problem using

'y
lax,, . I

r =% (A.28)

to find A:x'k“.

Step 3: If I{A'fkﬂll < "A_)gkll then proceed to the next iterationm.

1f IIA:X‘k +1|| > "Al.kll then solve the initial value problem

using

oK

< X , (A.29)
2( X, I + (T - Vlaxg D

k

This scheme is ideally suited for the flooding proress since it contin-

uvally tests large values for I‘k. Hence, when the derived and optimal

controls are "close", as is usually the case in the {looding process,

convergence Is very rapid.

Scheme 2: A systematic search wherein the interval [0, 1] was

1,2, eoey 1
9 9
was tested and the one which produced the minimuim }f*:«kﬂf! was

divided into q equal intervals. Each of the valucs T =

L

b b aiar ¢ st e T WAL A e A AN DU S e
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adopted. The disadvantage of this method is that it requires (q)
solutions of the initial value probiem per iteracion., However, in
those cases where the guessed values for (g,tf) were not "cloge" to
G!,tf)* this procedure was useful in gselecting a starting value for

P,(Pl). Also, this method was used to update,I' in Scheme 3,

Scheme j: The scale factor I' remained constant over a speci-
fied number of {terations. Periodically, a systematic search (Scheme
2) was made around the opersting point Pk to select an improved value

wkich incresses the rate of convergence., This procedure proved to be

DI N L1 ol

successful in the following situations:

1. In cases vhere the iterative process using Scheme 1 to select T
"hanga-up". This can occur when the number of switching pointa in
(tgotg) is sensitive to changes in (g,t.) and, in addition, when
the terminal state is sensitive to the number and location of the

v geros of sj. In such cases ' was held constant at the "best" value

computed by Scheme 1 and updated periodically or when "A4k+1">ﬂagdh

* 2, In cases where the fnitial guess was "bad" ( gl(t) did not have the

same form as g*(t)). To prevent the computed variations from
becoming too large hard limits were placed on }Axfl. Those sit-
uvations which required this method of solution are discussed in
detail in Appendix B;
In certain cases it was not evident which of the above schemes
is superior in terms of minimizing the nurmber of iterations required
for convergence (1.e., when fAX[<e¢ ). For example, Schemes 1 and 2

may require that the initial value problem be solved more than once per
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iteration. In contrast when using Scheme 5 the error would normally be
reduced for each solution to the initial value problem providing Ty

wag selected properly. However, the improvement per iteration may not

be as great as in Schemes 1 and 2.

O N N P
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APPENDIX B

SPECIAL CONSIDERATIONS IN THE COMPUTATION
OF OPTIMAL CONTROLS

This section discusses the convergence c?aracteristics of the
iterative procedure described in Appendix A as observed during the
computation of the results presented in Chapters U4 and 5. In particulsr,
the major pitfalls that were encountered in applying the Knudsen type
slgorithm to synthesize optimal controls for Systems (B) through (E)
are discussed, Also, the‘techniquea employed to mitigate these diffi-

culties sre summsrized.

B.1 Behavior of the Iterative Procedure

During the computation of the results presented in Chapters 4 and
5 it was found that the iterative behavior of the algorithm is directly
dependent upon the following system characteristics and/br computation-
al procedures:
1. The dimension of g(f) snd the shape of Q.
2. The quantitative structure of the switching functions.
3. The desired change in the state point (X(tf) - L(to)).
b, The error between the computed (nominal) and the optimal controls.
5. The scheme for selecting rk.
By iterative behavior we mean tt~ effect of AV, which 1is computed
during each iteration, on the control and hence on both the system's

trajectory and the characteristics of G. Yu those cases whcre the
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sbove mentioned items interacted unfavorably the real computational
problem was one of achieving convergence with the rate of convergence
becoming of secondary importance.

Let us now examine in detail how the aforementioned items, either
alone or through interactiorn, influégce the iterative behavior of s
Knudsen type algorithm, )

. First, during the flooding process as outlined in Section 4.5.1
it wes found that the algorithm described in Appendix A would, at times,
fail to converge when |y|£0.2 end T,<10. The reason for this behav-
ior becomes evident if one examines Figures 4.30 and L.4l. Here we find
that when IY is small the two terms in each of Equations (4.26) and
(4.27) can become of the seme order of magnitude (i.e., = 1); there-
fore, in general, the number of switchings in (to, tf) is reduced when
both IYI and i} become small. Should the total number of switthings be
reduced to the point where the third switch point is lost from the
interval (to, tf) due to a perturbation AV then the computstion must
terminate since G becomes singular. This situation characterizes the
ma jor difficulty in applying a Newton procedure when the rank of G
depends upon the number of switching points in (to, tf).

Second, providing the initial (terminazl) state point does not lie
on a switching hypersurface which contains optimal trajectories (i.e.,
h'1 + h2.2.3) then the previously described difficulties will not occur
if (a, tf) is close enough to (2, tf)ﬁ In general, this means that in
the region vhere |r|£;0.2 and EYQ,IO the derived and optimal steering

functions must have the same shape [15]. This condition will not be

satisfied if the "guess" for the optimal control corresponding to
g P resp
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states which lie within this region i{s "bad" or if during the flooding

process (’-('f)h-l ((10)14.1) is separated from {7£)£ ((10)1) by a switch-
ing hypersurfece. In the latter case 2:;1(1:0) # g:(to). In many cases
vhen |y| and/or ty were large enough it was found that the slgorithm
would recover from a bad guess for (g, t:f) or from an encounter with
a switching hypersurfasce if the derived and optimsl controls were not
too different in shape. , .

Third, in view of the requirement for at least n-1 switching
points in (tg, tf) the proper selection of I' becomes of increasing
importance in cases where the total number of switchings approsches
three, If Pk is too lsrge the AV computed during the kn1 iteration may
csuse the third switch point to be lost from the interval (to, te).
Hence, G becomes singular. Therefore, in such situstions, the selection
of I' was motivated by echieving convergence with rate of convergence
becoming of aecondar'y importance. When Irl and/or ty were "large

enough”" the usual effect of selecting too large & value for I' was

either the onset of oscillations in [|AX| or "A)_(knll > ||A7_(k|
Fourth, as is commonly the case in iterative sclutions, the di-
mension of g_(t) as well as the shape of QI has a profound influence om
the convergence characteristics of the computatioral procedure. In
general, it was found that the algorithm became less efficient and for
feiled to converge more often during the flooding process as the dim-
ension of u(t) decreased and when Q became unsymmetrical (e.g., Q=QD).
Thet is, for the four control systems considered the task of computing
optimal controls for Jet Configuration (D) proved tc be the most

difficult in terms of achieving convergence. This wcs particularly
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true when both |y| and iY were swall. In such ceses the form (ordering

of the thrust and coast periods) of the derived control had to be very
close to that of the optimsl control in order to guarsntee convergence.
Hence, the iterative procedure would not, in general, converge, due to
the loss of the third switch point when both |y| and LY vere small if o
guess was made for the optimal control. However, this was not s major
problem since in the flooding process only smell changes were made in
iY starting from that value for which the optimal control was known;
therefore, the derived control at each step was usually very close to
optimal.

From the previous discussion it is evident that the major draw-
back of the iterative procedure described in Appendix A is that of
requiring 8 minimum of three switching points in the interval (to, tf).
Therefore during the computstion of the results presented in Chapters
I and 5 it was necessary to modify the basié‘iterative procedure. Such

modifications were designed to improve the iterative behavior are pre-

sented in the following sections,

B.2 Convergence Charaéteristics

To illustrate typical rates of convergence achieved during the
computations discussed in Chapters U4 and 5 two examples of the relation
between missed boundary conditions defined by

le Il = lax, (8.1)

and the iteration number are presented in the sequel. ” '

Example 1

Purpose: To illustrate the nearly quadratic convergence of the

b TR S T
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Newton type procedure when the nominal and optimal controls have
the same form.
Plen”: Equation (4.7), y = -0.8, k-jets, g, = O,
Boundary Conditions: Case 1, Figure L,5; Z,g = .15,
Remarks:
1. The initial error llgoﬂ shown in Figure B.1 is the result of a
"guess" for the pair (a, t:f) . .
2. The computation time was approximstely three seconds on a
B5500 digital computer.
Example 2
Purpose; To illustrate the iterative behavior vhen I!gkll is

sensitive to the choice for I'.

Plant: Equation (L.7), 7 = -0.8, k-jets, B, =

¥
O
.

Boundary Conditions; Case 2, Figure h."'j; z:; -35.

Remarks: .

1. The initiasl error "goll shown in Figure B.2 is again the
result of & "guess" for the pair (¢, tf) .

2, 2°(t°) = Ea(to); however, when k = 2, I' = 1, 0.17, (ux(to))az
(n e D), = <15 (5,6 D), = (u (&), = +1. Thus, le ! = 2.5
even though TB - T:a- 0.

3, The computation time was approximstely 13 seconds.

B.3 Allowable Perturbations in the Final Time

As mentioned previously, the major drawback of Xnudsen's algor-

ithm is that of requiring at least n-1 switching points in the interval

(to, tf). In view of this requirement it was found th:zr the following
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conditions are conducive to G becoming singular:

1, E’O(to) * 2*(to) and (tf)k -t "small”,

2. The shape of u (t) being considerably different then that of _\?(t).
Such situstions occur, for exsmple, when a bad guess is made forg or
in certain cases during the flooding process when the (i-i-l)u initisl
(terminel) state point is sepsrsted from the (i.)Lh by 8 switching
hypersurface, In the case when (tf)k - to is ";mall enough" even smsll
perturbations in the pair (gk, (tf)k) can csuse the third switch point
to be lost from the interval (to, (tf)k). To alleviste this problem s
systematic procedure was developed for crossing switching hypersurfaces
when te - to is small; the particular technique is discussed in the
following section.

In many cases when the iterative procedure failad to converge
due to Ek(t) being dissimiliar to 2*(t5, it was noted that large neg-
ative perturbations \'Jere computed  n the dimensionless final time.
Hence, within several iterations the interval (tf)k - to had become
smsll enough to allow h1 + h2< 3.1 To prevent this "fz2ilure mode" from
occuring a hard limit was placed on the computed perturbation Atf

according to the following rule:

(Atf)max if IAth 2 (Atf)max
At

(B.2)

ate 1f |ate| < (aty) o

where (At:f)maxz- 0.05 t..

l'I‘he reason for this sensitivity to changes in t  when u (t) does not
have the samc form as u*(t) becomes evident if one c:nsiders a simple
problem such as time-optimal control of the double i-:egrator
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The effect of limiting At_ in this manner is quite different than de-

£
creasing I'. Reducing the iterative scale factor tends to decrease both

llagliand A tfl. However, |Atf| will still be large compared to [jag]l;
hence, the overall effect of decreasing I' is that of increasing the
number of iterations until the third switch point is lost from the
interval (to, (tf)k)' The beneficial effect of placing a bound onpt,
i{s to allow the iterative procedure to cycle ; sufficient aumber of
times, thus reducing the error between & and g;t Oace gf(t) and Ek(t)
are of the same form the procedure normally converges with no further

g (e if the pertur-

*
£
bation AX is not too large; note, this is not true for System (D)).

difficulty (during the flooding process (t:)1+1
In some cases where t; was not "large" (fY;'; 10) it was found

that placing a lower limit on (t:f)k would tend to prevent G from
becoming singular. This was accomplished by observing the fact that the
required change in the normalized angular momentum dictates the fine
time when the thruster "on-off" times are only a function of W, and Bo
(see Section 4.6.1). At this point it should be noted that only during
the application of Scheme 3 (see Appendix A) to select I’ were limits

placed on At,. Also note that this procedure was found to be rather

£
{fneffective during the computation of those results discussed in

Section 4.7, i.e., when u(t) = un(t).

B.4 ' The Computation of Optimal Controls when the Initial (Final)
State Point is Close to a Switching Hypersurface and the Total
Number of Switching Points Equals Three

]
In this section we present a technique which prevents the itera-

tive procedure from "hanging up” when the (1+1)a£ initial (terminal)

state point in the flooding process is separated from the (i)‘t‘h by a

D s e WRMANAL S
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switching hypersurface and, in addition, (h1 + h2)1+1 - (h1 + hz)i = 3.

Such a procedure was required during the computation of the results
presented in Figures 4.7 through 4.13 and 4.30 through 4,33 when

(fY)B < 1 and (1:‘{)0 & b4 (note, the discontinuities iz 2y are not large
and occur when (E‘I)B & 1 and, therefore, are not shom in Figures 4.6
through 4.8 and L4.10 through L.12).

As indicated in the previous section the iterative procedure
described in Appendix A experiences convergence difficulties when: (1)
the interval (to, tf) 18 "small", and (2) gk(t) does not have the
same form as g*(t). Under such conditions the computad per turbations
(e, Amf) will eventually result in G becoming singular.2 Such was the
situation during the computation of the results discussed in Secticns
4.6.1 and 4.7.1; switching hypersurfaces were encour.tered when T;§;3
and when T:§,5. Therefore, to prevent the flooding procedure from
"hanging up'" at a switching hypersurface two subroutines were incorpor-
ated in the basic program. The first allows the required transition
when the control is provided by Jet Configuration (C' and the second
when the control is a two dimensional vector (u(t) = gn(t), gE(t)).
B.4,1 Scalar Control

In this case the state space can be divided ir:to regions defined

is separated from

by “(5,) +1 or u(co) = -1, Hence, when (Z

f)1+1
(_&f)i by a switching hypersurface we find that ui+1<:°) = -ui(to).

In view of this change in u(to) the following proced .:re is employed

2Limiting At. does not, in general, provide a soluti>n to this problem
when (ff - to) s "small" since small changes in ¢ can also cause

h +h «3
1 2
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*
to compute the nominal control for (zf)i+1 when (u*(t), tf)1 ts known:

i. Monitor hy' 1f hy«:3 then set (uy(to))1+1 = '(uy(to))i‘

*
2. Pick three switching points in (t,, (:f)i). Since IKXf)1+1‘ (3{)1"
1s small, (tr), . =(t, :
o small, (e),, =(te),.

3. 8olve the switching equations Sy( s tz).= 0, j =1,2,3, simulta-

aj+1
. This is possible since ¢ is a normalized form of

neously for ¢

A
P(t,) (see Appendix C).

-At
a1+1

= (t:)1 for the final time.

4. Use (uy(c)) = SGN [e ] as the new estimate for the con-

i+1

*
f)1+1
The only input required by this procedure are three switching times.

trol and (t

In view of the algorithm's "failure mode" the following values for the
switching times were found to be satisfactory:

CHNES ICANNCANRES TCRI (:%)1+1 . 3(if)1

Thus, perturbations in @1, tf) were not as likely to result in hy<’3
as would be the case if (t{)1+1 were close to zero or (tg) were close

to t_. It was also found that Schemes 2 and 3 for selecting I’ resulted

£
in & more reliable iterative scheme; I'> 0.7 would often result in hy< 3
B.4.2 Two Dimensional Vector Controller

In the sequel we present a technique for crossing a switching
hypersurface when the admissible control set is a square in R2. In
this case there are three possible choices for (3(:0))1+1. One method
for evaluating (EKto))i+1 would be to systematically iterate on all
combinations of ux(to) and uy(to) until the correct one is found. How-

ever, in view of the conditions (final time, number of switchings per

channel, and total number of switchings) vhich existed when a switching
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hypersurface was encountered such a procedure wss found to be unnec-
essary. Instead, a systematic method was developed which taekes advsn-
tage of the spparent "smoothing" (the reduction in magnitude of the
discontinuity of the support hyperplanes at the corners) of the iso-
chrones as the dimension of the control vector increases.

Let us begin by reiterating the behaviof of the control as
changes were made in ty (during the flooding process (LY)1+1= (iY)i .

- AI'.Y)e For 'those results presented in Figures 4.6 through 4.13 the
starting value of (fY)B was LO smd s switching hypersurface wes not
encountered until (IY)BE 1 . During this flooding ncither ux(tc) nor
uy(To) changed sign due to the introduction of new switch points into
the beginning of the interval (to,tf) or due to the loss of existing
switching points. However, switching points were lost from the right
end of the interval (to,t ) #s the terminal time decreased, this sit-
uvation is illustrated in Figure B.3. Hence, 6 did not become singular
until h =2 (hx= 1),hy =1 (hy = 2), and the computed perturbations

(ag ,Atf) caused the loss of one switch point from the right end of the
interval (to,tf). At this point further information as to the form of
the new control was found to be essential in order to contirue with the
flooding process.

From the time-optimal solutions to simple pyoblems (the harmonic
oscillator) it appears that the discontinuities in the support hyper-
planes at the corners of the minimum time isochrones tend to "smooth
out" as the dimension of the control vector increases. Thus, it wa;
conjectured that when (xf)i+l was separated from (_)Sf)i by a switching

hypersurface,the jump in 0 would not be large when u(t) =2B(t), Eg(t)'
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This hypothesis is found to be realistic if one compsres the magnitude
of the discontinuities in Qs Pigures 4,30 through 4.32, to typical

1 ’03 ]

values for qp, €.g., for y = 0.2, g = O (EY)B =0T o

a, = 0.85, oy = 3.36, o) = 1, Ty = 1.66; (L) = 065 o = 1.03,

@, = 0.35,0, = 3.06, a =1, r; = 1.51.

3
With the previous discussion in mind we can now summarize the
procedure for efi:cting‘iwitching hypersurface transitions.
1, Determine the first roots of Sx(t) =0 and Sy(t) = 0 which occur
outside the intervsl (t , (tf)i+l); s typical result is depicted

in Pigure B.5.3 Here, the additional switching points t?_, t

1.?
t{;, and of course the switch point that was lost, tI+, are shown,
A comparison between t?m, t{ and ti; is then made to determine

the switch point closest to (t, (tf)i+l); this point is denoted
by (ti)l. In all cases considered during the computation of the
results presented in Chapters 4 and 5 a root of the switching

function which did loose & zero from the right end of the interval
*

f L]
1llustrated in Figure B.3 where ux(t) has lost the switch point

(to, (tf);+1) was found at t = ~¢, e<< t This situation is

c; and uy(t) is about to gain the switch point t¥; at the left

1
end of (to, (tf i+1)'
2. Based on the premise that the "jump" in O 1s not large, small per-
turbations are made in @ so as to achieve the following changes in

u(t):

Iy 1
a) (t;) moves into the interval (t,s (tf)i+1)°

S(¢ Y1 . 5 -
(tf)i+l is the result of the first ireration for (tf)i+1'
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Figure B.,3 The Loss of a Switch Point During an Zacounter With
a Switching Hypersurface
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b) The switch points that were not lost remsin within the inter-
1 X y
| val (to, (t£)1+1’ e.g., t and e in Figure B.3.
Thus the following alterstions were made in the steering functions:
1) h(h) =1, h(h ) =2 changed to h (h ) = =
(1) n(h)=1,n(h) changed to h (h ) = 2, h (h) =1, and
(2) as dictated by the location of (ti)1 a sign changed occurred in
1 1

either ul(to), ul(t£)1+l, ua(to), or ua(tf)1+r' This procedure was
sccomplished by relating changes inQ linearly to the desired changes
in ti. A recursive relation similar to (A.9) was then employed to
compute changes in O such that (ti)1 moved into the interval (to,

(tf)i+l) and at the same time allowing no changes in the two switch

1 X P 4
points which remained in (ta’ (tf)i+1)’ e.g., t1 and t1°

B.5 Controller Configurations (D) and (E): Additional Computational
Requirements

In view of the peculiar characteristics of both u;(t) and
(Sx'(t), Sy'(t))E, further modifications designed to improve the iter-
ative behavior were made to the basic algorithm., As in the previous
sections the motive for incorporating additional computational rules or
procedures was one of ensuring the existence of G-l.

B.5.1 Controller (D)

Of the four systems for which optimal controls were determined
by iterating on (u, tf) the computation of (uy, tf); proved to be the
most difficult in terws of the effort required to achieve convergence.
; in terms of (iY)D where

the nominal and optimal controls did not have similar forms (the order-

In preliminary attempts to compute (@ , tf)

ing of the thrust and coast periods were dissimilar) excessively large

perturbations were computed in (& and/or t_; hence, at some point

f,
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hy < 3 and thus G became singular. In view of this "failure mode" the
following procedure was developad to assist in the computation of resl-
istic perturbations.

The primary difficulty in schieving rapid convergence when
u(t) = ub(t) becomes evident when we exsmine Figures 4Lk end b.b5,
Here, we find that T; is not s continuous function of it, vhich 1is in
direct contrast to the characteristics of T*, T;, T;,
this situation is similar to an encounter with s switching hypersurface

*
snd ’I'B . Hence,

(see Section B.t) where 0 undergoes a discontinuity, However for

Control System (D) the change in control due to the loss of a switch

Y
o 9 - 1 =
((tY)i-rl (E,‘,)i ty) results in uy(tf)i-n O. When this situation

point from the right end of (to, (tf);ﬂ as changes are made in i

occurs during the flooding process t; undergoes 8 discontinuity since
the control must terminate with a thrust period. Therefore, to prevent
the computation of large perturbstions in @ and/or t £ the nominal

control for (Zf) was formed by: (1) setting @, = g;ﬂ, (2)

i+

, = -
systematically reducing (t by a small amount (‘tf)jn = (t:f).1

1
f)i+1

At, =1, 2,3, ... j) until uy(t =1, and (3) setting

£
(tf)1+1= (tf)j. This procedure gave good results #=d allowed rapid
solutions for (& , tf)* in terms of f} for values of iY from 40 down
to 0.2.
8.5.2 Controller (E)

Due to the form of (Sx'(t), Sy'(t))E it is possible to loose all
the switching points from (to, tr) during the iterczive process when

la.] s |a] and Ja | = |a |. To prevent tiis situstion from
1 3 2 4

occuring ¥ and @ were defined by
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vhenever the computed perturbation in @ resulted in hx' + hy' < 3.

The augmenting terms 53 and & were chosen such thet the contrcl de-
4

viation from ux(t.) = 1or uy(t) = 1 for all te(to, tf) due to
switch points locasted close together resulted in the iterstion cut-off

criterion on the normalized angular momentum being cztisfied. That is,
A A A N
ITg | - 1Lg(Tg)| < 0.01, Iyl - |LY(1~E)|5 0.01.
Thus, the boundaries shown in Figures S.k through 5.5 which separate
the singuler and non-singular regions were defined vhen zither

a=a tf ora =a teg,
3 2 4

b § L} 4
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APPENDIX C
VERIFICATION OF THE SWITCHING SEQUENCES DEFINED IN TABLE L.1

This appendix consists of two parts. The first section verifies

that the switching logic for Controller (B), as defined in Table L.1,

*

is optimal when T, < T, T, = i7. The second section demonstrates that

B B’ "B
Sx(a) (Sy(a)y can have three independent zeros in an arbitrary
interval (cb, cf); hence, there exists a solution for O in terms of the

three roots,

*
C.1 Optimal Switching Logic for Controller (B) when TB < T;

In Section L.4.1 it was assumed that the initial (terminal) state
point does not lie on a switching hypersurface which contains optimal
trajectories; therefore, hx + hy 23. Moreover, as shown in C.2 there
erists an @ such that three independent roots of either Sx(oi) = 0 or
Sy(cj) = 0 occur in an arbitrary interval @b ’ °f)' We shall now demon-
strate that the total number of switching points cannot exceed three

hen T, < T.

when T, B

One way to verify this claim is to show that the function
¥=1-lnr (c.1)

m =0, ¥1, 12, ...., has at most three zeros for o (0, T;) vhere

(¢.2)

1 [alsin (70 + a,) + sin (v + aa)]
T = ta

o cos (yo + a,) + cos (o + a,)

and (m) is choscn to vepresent a particular soquence of zeros, e.g.,
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n=0,1,0, m =0,1,2,3.

Through & geometric interpretation of the quotient Sx(o)/sy(a) we
find that the magnitude of al has significant influence on the behaviog
of T . Therefore, the cases when |o,| <1, o | > 1, and o | = 1 are
considered separately.

Case A: Iall <1

Differentiating (C.2) with respect to ¢ gives

- 1 - 1)
+

d 1
-d-§- = b4 ; (0'3)

2(1% + 1+ 2a1cosx)

where A = (y - 1)o + &', Note that for =1 < y < 1 both terms on the
right side of (C.3) are always positive. Define A as thc new indepen-

dent variable. Then (C.3) becomes

2
a, -1
ar = % 7+ 1 + = 1

dx . (c.k)
7-1 a,+1l+20

1cos),

Integrating the second term from A = O to )\ = 27 we find that the

change in T is

7y +1
2

AT = Ao+ T (c.5)

Since dT /do is always positive, roots of the formm =0, 1, 2, 3, ...
are of interest. If AT < 37m/2 then there are at most three roots of
tﬁis type. For a giQén interval Ac = Og - 06 the first term on the
right side of (C.5) will be a maximum when y = 1. Therefore, AT < 3m/2.
case B: |o)| > 1
In this case the second term of (C.3) is always negative for

-1 < y < 1. Furthermore, setting the left side of (C.3) equal to =zcro
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we find that the derivative changes sign when

A = cos™} [ %J : (c.4)

Therefore, unlike the situation encountered in Case A,we must consider
the fact that zeros of T can occur for values of (m) other than those
defined by the sequence m = 0, 1, 2, 3, .c.. ., To show that the total
number of zeros of sx(o) and Sy(c) cannot exceed three it is suffi-
cient to demonstrate that four zeros of the type defined in Table C.1l

cannot occur,

Case m Case m

|
l-a O’ 0: 0: 1 3'b 3' 2: 1’ 0
1-b 1, 0,0, 0 b-a 0, =1, <1, 0
2-a 0, 0, 1, 2 L-b 0, 1: 1) 0
2-b 2, 2,1, 0 5-a 1, 1, 0, O
3-a 0, 1, 2,3 " 5-b 0, 0, 1, 1

Table C.1
Possible Combinations by Which Four Zeros of © Can Occur

To accomplish this task we first consider a geometric interpre-
tation of Equation (C.k4) as depicted in Figure C.1.” By observing the
location of both the zeros of d7 /do and the maximum change which
occurs in T between the zeros it is possible to demonstrate that Cages
1 through 4 cannot occur. Note that Cases 1, 2, and 4 require [a 7| to

be at least T/2 before and/or after the first or second revo of d 1 /do
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and that Case 3 requires: (1} |AT | to be at least 37/2, and (2) (o)

to be monotone,

From Equation (C.3) it i{s evident that the maximum positive

change in T occurs when y = +1 and {s

Mmax < ‘é‘ﬂ'

vhenr A0 < /2. Thus, Cases l-a, 2-a, 3-a, L-a,b, and 5-b cannot exist.
1 .a’;‘

2
a; + 14+ ealt:osx

-7 0N A 71 A2 2p¢

Figure C.1 A Ceometric Interpretation of Equation (C.h)

Following the method of integration employed in Case A we find
that the maximum negative change in T 1is -7 when A\ = -27. Therefore,

Cases 2-b and 3-b cannot occur,

Case 1-b requires that the interval A\ contains one of the points

.defined by M= 2mr, m = 0, ¥1, ¥2,.... . Moreover, the negative term of

(c.4) is an even function of )\ (see Figure C.1). Consequently, the
maximum negative change in T when: (1) |A\| < 7, and (2) the interval
AM contains the point defined by A = 2nm, m = 0, %1, ¥2,..., is greater
than -T/2. Therefore, Case 1-b cannot occur.

To show that Case 5~a cannot occur we must resort to a more
sophisticated approach then that used in the previous paragraphs. In

fact, it appears thot T can change by -7/?. Therefore, Equations (C.3)
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and (C.6) must be examined in detail in order to determine if both the
ordering and magnitudes of the positive and negative changes in T
required for the existence of four zeros can indeed occur.

To complete the proof and show that Case 5-a cannot exist when
Ao < A (let us assume that AF = T/2) the following facts are noted:
(1) le - Ayl < 7 when Ao < /2, and (2) xle[x.f, A,) and )?e[).f. o)
if two zeros of dT /do are to occur when Xe[xf, xol. Now let \% = o
If A - A = X% < A% where A 2 A° and, in addition, if AT = -T/2 for
AN =122 - 22 then it is possible for four zeros of T to occur. More-
over, the aforementioned procedure for locating the interval [xf, 10]
on the A axis represents the most efficient means by which % can have
four zeros. This is due to the fact that the positive change in 7T,
which occurs between A' and A%, is a maximum (xl,XQG[Lf, %ol). To find

the smallest change in A for which four zeros can occur, the function
A =2 - 0=\t (c.7)

must be minimized subject to the constraints

1 [@ -1 o' 1 al-l \
1) = A7 . - - bl S 1
g(al,y.x ) é tan [a T 1 tan dk] tan [a ; tan gl}
1 1 + 2
(c.8)
+ 1
LIZ (zr-2° M=o
2(r- 1)

o [ >1, [2l <1, 2= 2°> 0 (c.9)

IAA]maxx T and the point ). = 7 must be contained in [mf, xo], Thus, ,we
must solve a Lagrange multiplier problem where sowe of the constraints

are strict inequnlities.
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From the theory of constrained maxima or minima (see for example
Reference [22]) we find that it is necessary that the point defined by
(01. 7, M) at which A\ takes on a relative maximum or minimm satisfy

the set of equations

e

==+ =0 (c.10)
aal aaz1

Im,x38 . ,

67”‘37 0 (c.11)
9IM 3238 ., (c.12)
d Al dal

vhere |7| <1 and ldll > 1. For reasons which will become evident
presently it is desirable to select values for 7 within the allowable
vange and then solve the lower dimensional multiplier problem. Thus, we

are interested in solving (C.8) in addition to

. ~{(af - 1) sec’ !
S 2B o +>.[

&

o, + 124 (@ - 12 ean® 2 207- 1)

38
Bal-

o/

o]

[

(c 13)

(1 -.a?(’r + 2)]

1 1 ° 2
oAl 3 a1(7+1)ja172(1-a§) w2

+

7oa, (1 - o) + (d';’ 1) 41 \
20 (1 = 7)o + 1)(1 - ﬂl)f(al = (1 + )
(o + 1)(1 - 90y)

142
2tan A N (C.lh)

(@, + 12 + (o, - 1)%tan” It
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y[t - 0@(7 + 2)]

2 (7 - 1) .[0[‘;72(1 - af) + di -1

=0

for (al, A%, 1) when lall > 1. Due to the non-linearity of these equa~
tions a gradient procedure was employed to iterate for the pair (al’ A
The particular method used [23] required approximately thirty seconds
oun a B5500 digital computer to converge to a solution of Equations
(c.8), (c.13), and (C.14) for each value of y. The results of this
numerical approach are presented in Figure C.2. At this point it
should be noted that the graphs shown in Figure C.2 are the result of
solving the Lagrange multiplier problem when: (1) only the strict
equality, Equation (C.8), is considered, and (2) Equations (C.8),
(C.13) and (C.1L) are considered (when 0 < A° < al).

For values of y between 7 ® - 0.26 and 7 % + 0.26 neither )°
nor al violated the constraints given by (C.9); hence, simultaneous
solutions were obtained for Equations (C.8), (C.13), and (C.14). When
y became approximately + 0.26 it was evident that 3° - A1, Therefore,
the solution when ¥ 2 0.26,was obtained by setting 22 = 3! and iterat-
ing on O, until (c.8) was satisfied.

Due to the fact that )\° - 0, a simultaneous solution to
Equations (C.8), (C.13), and (C.il) could not be found when y < -0.26.
When this occurred A° was set equal to zero and the iterative procedure
was then employed to solve (C.8) for al; as indicated in Figure C.2, no
solutions were found, '

In the muitiplier problem thn cost must be evaluated when the

constrained variables become saturated at their allouvable limits. In
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the preceeding discussion it was noted that solutfons to (C.8) were
>

obtained in terms of a when X% = 2\! for y  0.25. As indicated in

1
Figure C.Z it was also possible to satisfy (C.8) whea )0 = ! for val-

ues of y down to y ¥ -0.38. Note that the cost is slightly less when
A% = Al then it 1s for 0 < 2% < Al. Also note that Ag appears to
approach w/l4 as y - + 1. Hence, for those v:alues of y which are of
physical interest, T cannot have four zeros when g < /b

Case C: fa | =1

If cos A # -1 then the second term of (C.3) is identically
gero; therefore, the conclusions reached in Case A zre applicable,

Wea A=+mr,m=1, 3,5, .... , the second term of (C.3)
becomes, in the limit, as a -1

1
ai» 1 !a §

1

Since this limit i{s not unique a singular condition exists. This be-
havior is apparent if one considers a geometric interpretation of the

following equations

xlsin(a+x2)

1+ ——— aavae

Q= tan™ !
X1COS(G+X2)

where

2 o 2 -
A a2+ 1 +2a cos(xa 03)

sin o+ a_sin )\ _
).2 = tan—l [ < 1 3
cos C13+ ozlcos )':-‘
= -1 Y
M, = (y-l)o i u

it

Ve

’ E3

[ TN
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Figure C.2 Sclution to the Multiplier Problem
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It 1s readily shown that !A 'I‘l <m when Ag <7 . Therefore, argu-
ments similar to those in Cases A and B can be used to show that T

cannot have four zeros when A ¢ < /b4 .

. C.2 Independent Zeros of the Switching Functions

The switching function Sx(c), (Sy(o)), has thrce independent
i zeros Sx(ci) =0, (Sy(ci) =0), £ =1, 2, 3. Thus, Sx(o), (Sy(c)), .
can be made to have three zeros in an arbitrary interval (ob’of)'
Proof:
At the svitching times 0., 1 =1, 2 3, Sx(oi) = 0. Hence
Equation (L4.23) becomes:

S(c)=P cosyd +P sinyg + P cos(o +p )+P sin(g+p ) =0
X' 3 1 b 2 1 3 1 0 4 1 0

0 (o) o o !
S (o0 )=P cosyu + Py sinyg + P cos(og +B )+P sin(o + =0
((5,) = cosyu_+ Pz sinyo_ +P_cos(a+p )P sin(o +p )
(o] o] (o)
S(c)=P cosysc +P sinyg + P cos(oc +p )+P sin(og +p ) =0
X' g 1 a 2 3 3 3 0 4 3 0

) o o ()
Finally for some Sx(o‘) # 0 we have
S{oc)="P cosyo + P sinyo + P cos(oc +p )+P sin(c +B ) .
X 4 1o 4 20 4 ao 4 O 40 4 O

Writing the above equations in matrix form gives:

- ar r -
cosys siny0 cos(o +B ) sin{oc +B ) P ] 0

1 1 1 0 10 1, |

|

cosys sinyo cos(o +B ) sin{oc +B ) | 0 |

2 2 2 o 2 0 2, |

= (c.17) |

cosyo sinye cos(o +B ) sin(o +8 ) P 0 |

3 3 3 o 3 0 3, ;
rosyo sinys cos(c +B ) sin{o +B ) P S (¢)
4 L a 4 © 4 0 sl 174

The functions cosyg, sinyg, cos{a+p ), sin(otf ) are linearly ii.lepen-
0 o
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dent for -1 <y < 1. Hence, the coefficient matrix is non-singular
and, therefore, its inverse exists. Thus Equation (C.17) can be solved
for go which shows that Sx(o) has three independent zeros (through a

similar procedure we can easily show that Sy(a) has three independent

zeros).
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